These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34282879)

  • 1. Polymer-Derived Lightweight SiBCN Ceramic Nanofibers with High Microwave Absorption Performance.
    Chen Q; Li D; Liao X; Yang Z; Jia D; Zhou Y; Riedel R
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34889-34898. PubMed ID: 34282879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible SiC/Si
    Wang P; Cheng L; Zhang Y; Zhang L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28844-28858. PubMed ID: 28799331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Electromagnetic Wave Absorption for Y
    Wang C; Chen P; Li X; Zhu Y; Zhu B
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55440-55453. PubMed ID: 34761903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Temperature Stable and Metal-Free Electromagnetic Wave-Absorbing SiBCN Ceramics Derived from Carbon-Rich Hyperbranched Polyborosilazanes.
    Luo C; Tang Y; Jiao T; Kong J
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28051-28061. PubMed ID: 30024720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-Transformation Nanoparticles Synchronously Boosting Mechanical and Electromagnetic Performance of SiBCN Ceramics.
    Song Y; Zhu R; Liu Z; Dai X; Kong J
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4234-4245. PubMed ID: 36648102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong and thermostable hydrothermal carbon coated 3D needled carbon fiber reinforced silicon-boron carbonitride composites with broadband and tunable high-performance microwave absorption.
    Yang L; Yin L; Hong C; Dong S; Liu C; Zhang X
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):270-282. PubMed ID: 32823128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure and Dielectric Properties of LPCVD/CVI-SiBCN Ceramics Annealed at Different Temperatures.
    Li J; Zhao M; Liu Y; Chai N; Ye F; Qin H; Cheng L; Zhang L
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28773015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene Shield by SiBCN Ceramic: A Promising High-Temperature Electromagnetic Wave-Absorbing Material with Oxidation Resistance.
    Luo C; Jiao T; Gu J; Tang Y; Kong J
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39307-39318. PubMed ID: 30351896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicomponent Nanoparticles Synergistic One-Dimensional Nanofibers as Heterostructure Absorbers for Tunable and Efficient Microwave Absorption.
    Wang C; Liu Y; Jia Z; Zhao W; Wu G
    Nanomicro Lett; 2022 Dec; 15(1):13. PubMed ID: 36520259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyper-Cross-Linked Polymers-Derived Porous Tubular Carbon Nanofibers@TiO
    Kang S; Qiao S; Cao Y; Hu Z; Yu J; Wang Y; Zhu J
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46455-46465. PubMed ID: 32991137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous Structure Fibers Based on Multi-Element Heterogeneous Components for Optimized Electromagnetic Wave Absorption and Self-Anticorrosion Performance.
    Zhu J; Lan D; Liu X; Zhang S; Jia Z; Wu G
    Small; 2024 Aug; ():e2403689. PubMed ID: 39128133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimized impedance matching construction strategy: carbon nanofibers inlaid with Ni nanocrystals by electrospinning for high-performance microwave absorber.
    Zhang D; Gao H; Han C; Zeng G; Wu Q
    RSC Adv; 2024 Jun; 14(29):20683-20690. PubMed ID: 38952935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yolk-shell construction of Co
    Meng L; Wang J; Qi J; Liu X; Li L; Yun J; Wang G; Yan J; Bai J
    J Colloid Interface Sci; 2024 Apr; 659():945-958. PubMed ID: 38219313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofiber network with adjustable nanostructure controlled by PVP content for an excellent microwave absorption.
    Lv J; Gu W; Cui X; Dai S; Zhang B; Ji G
    Sci Rep; 2019 Mar; 9(1):4271. PubMed ID: 30862890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon.
    Qiu X; Wang L; Zhu H; Guan Y; Zhang Q
    Nanoscale; 2017 Jun; 9(22):7408-7418. PubMed ID: 28540377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Preparation of Cobalt Nanoparticles Decorated in N-Doped Carbon Nanofibers as Excellent Electromagnetic Wave Absorbers.
    Liu H; Li Y; Yuan M; Sun G; Li H; Ma S; Liao Q; Zhang Y
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22591-22601. PubMed ID: 29888901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of Hollow Carbon Nanofibers with Graphene Nanorods as Nano-Antennas for Lower-Frequency Microwave Absorption.
    Li M; Song X; Xue J; Ye F; Yin L; Cheng L; Fan X
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31720-31728. PubMed ID: 37356111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Microstructure and Mechanical Properties of Si
    Gong Z; Xu Z; Zhang J; Guo R; Han Y; Sun X; Yuan Z; Zhao X; Zhang B; Zheng C
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lotus Leaf Derived NiS/Carbon Nanofibers/Porous Carbon Heterogeneous Structures for Strong and Broadband Microwave Absorption.
    Jiang H; Wang C; Cui B; Xu X; Li M; Xu Z; Tan H; Wang C; Wang Y
    Small; 2023 Dec; 19(50):e2304918. PubMed ID: 37626450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology Design of Co-electrospinning MnO-VN/C Nanofibers for Enhancing the Microwave Absorption Performances.
    Yuan X; Wang R; Huang W; Kong L; Guo S; Cheng L
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13208-13216. PubMed ID: 32092255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.