These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34283119)

  • 41. Learning-Based Robust Tracking Control of Quadrotor With Time-Varying and Coupling Uncertainties.
    Mu C; Zhang Y
    IEEE Trans Neural Netw Learn Syst; 2020 Jan; 31(1):259-273. PubMed ID: 30908267
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adaptive Quadruped Balance Control for Dynamic Environments Using Maximum-Entropy Reinforcement Learning.
    Sun H; Fu T; Ling Y; He C
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502796
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DDPG-Based Adaptive Robust Tracking Control for Aerial Manipulators With Decoupling Approach.
    Liu YC; Huang CY
    IEEE Trans Cybern; 2022 Aug; 52(8):8258-8271. PubMed ID: 33531316
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vision-Based Multirotor Following Using Synthetic Learning Techniques.
    Rodriguez-Ramos A; Alvarez-Fernandez A; Bavle H; Campoy P; How JP
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31689962
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Time-Varying Formation Tracking for UAV Swarm Systems With Switching Directed Topologies.
    Dong X; Li Y; Lu C; Hu G; Li Q; Ren Z
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3674-3685. PubMed ID: 30346294
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing multi-UAV air combat decision making via hierarchical reinforcement learning.
    Wang H; Wang J
    Sci Rep; 2024 Feb; 14(1):4458. PubMed ID: 38396185
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vehicle Counting Based on Vehicle Detection and Tracking from Aerial Videos.
    Xiang X; Zhai M; Lv N; El Saddik A
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081578
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reinforcement Learning Algorithms for Autonomous Mission Accomplishment by Unmanned Aerial Vehicles: A Comparative View with DQN, SARSA and A2C.
    Jiménez GA; de la Escalera Hueso A; Gómez-Silva MJ
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960711
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visual-based quadrotor control by means of fuzzy cognitive maps.
    Amirkhani A; Shirzadeh M; Papageorgiou EI; Mosavi MR
    ISA Trans; 2016 Jan; 60():128-142. PubMed ID: 26678850
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Backstepping-based adaptive control of a quadrotor UAV with guaranteed tracking performance.
    Koksal N; An H; Fidan B
    ISA Trans; 2020 Oct; 105():98-110. PubMed ID: 32591252
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved UAV-to-Ground Multi-Target Tracking Algorithm Based on StrongSORT.
    Cao X; Wang Z; Zheng B; Tan Y
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005625
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effective and Safe Trajectory Planning for an Autonomous UAV Using a Decomposition-Coordination Method.
    Nizar I; Jaafar A; Hidila Z; Barki M; Illoussamen EH; Mestari M
    J Intell Robot Syst; 2021; 103(3):50. PubMed ID: 34720405
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Real-Time Model-Free Minimum-Seeking Autotuning Method for Unmanned Aerial Vehicle Controllers Based on Fibonacci-Search Algorithm.
    Giernacki W; Horla D; Báča T; Saska M
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30646579
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Autonomous Vision-Based Aerial Grasping for Rotorcraft Unmanned Aerial Vehicles.
    Lin L; Yang Y; Cheng H; Chen X
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382629
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automatic Change Detection System over Unmanned Aerial Vehicle Video Sequences Based on Convolutional Neural Networks.
    García Rubio V; Rodrigo Ferrán JA; Menéndez García JM; Sánchez Almodóvar N; Lalueza Mayordomo JM; Álvarez F
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31623134
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Modular Multirotor Unmanned Aerial Vehicle Design Approach for Development of an Engineering Education Platform.
    Kotarski D; Piljek P; Pranjić M; Grlj CG; Kasać J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924495
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On Analyzing Routing Selection for Aerial Autonomous Vehicles Connected to Mobile Network.
    Mongay Batalla J; Mavromoustakis CX; Mastorakis G; Markakis EK; Pallis E; Wichary T; Krawiec P; Lekston P
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430000
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new robust adaptive mixing control for trajectory tracking with improved forward flight of a tilt-rotor UAV.
    Cardoso DN; Esteban S; Raffo GV
    ISA Trans; 2021 Apr; 110():86-104. PubMed ID: 33162060
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems.
    Vetrella AR; Fasano G; Accardo D; Moccia A
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999318
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tuning the Proportional-Integral-Derivative Control Parameters of Unmanned Aerial Vehicles Using Artificial Neural Networks for Point-to-Point Trajectory Approach.
    Ulu B; Savaş S; Ergin ÖF; Ulu B; Kırnap A; Bingöl MS; Yıldırım Ş
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.