These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34283127)

  • 1. Evaluation of Open-Source and Pre-Trained Deep Convolutional Neural Networks Suitable for Player Detection and Motion Analysis in Squash.
    Brumann C; Kukuk M; Reinsberger C
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating Player Positions from Padel High-Angle Videos: Accuracy Comparison of Recent Computer Vision Methods.
    Javadiha M; Andujar C; Lacasa E; Ric A; Susin A
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34066162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Query Language for Exploratory Analysis of Video-Based Tracking Data in Padel Matches.
    Javadiha M; Andujar C; Lacasa E
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Pose Estimation and Tracking in Handball Actions Using a Monocular Camera.
    Šajina R; Ivašić-Kos M
    J Imaging; 2022 Nov; 8(11):. PubMed ID: 36354881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of vision-based motion analysis in sport.
    Barris S; Button C
    Sports Med; 2008; 38(12):1025-43. PubMed ID: 19026019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Deep Convolution Network Algorithm in Sports Video Hot Spot Detection.
    Zhang Y; Tang H; Zereg F; Xu D
    Front Neurorobot; 2022; 16():829445. PubMed ID: 35721275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analysis of the influence of transfer learning when measuring the tortuosity of blood vessels.
    da Silva MV; Ouellette J; Lacoste B; Comin CH
    Comput Methods Programs Biomed; 2022 Oct; 225():107021. PubMed ID: 35914440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.
    Shin HC; Roth HR; Gao M; Lu L; Xu Z; Nogues I; Yao J; Mollura D; Summers RM
    IEEE Trans Med Imaging; 2016 May; 35(5):1285-98. PubMed ID: 26886976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection, segmentation, and 3D pose estimation of surgical tools using convolutional neural networks and algebraic geometry.
    Hasan MK; Calvet L; Rabbani N; Bartoli A
    Med Image Anal; 2021 May; 70():101994. PubMed ID: 33611053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Movement and Activities of Handball Players Using Deep Neural Networks.
    Host K; Pobar M; Ivasic-Kos M
    J Imaging; 2023 Apr; 9(4):. PubMed ID: 37103231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring tool usage in surgery videos using boosted convolutional and recurrent neural networks.
    Al Hajj H; Lamard M; Conze PH; Cochener B; Quellec G
    Med Image Anal; 2018 Jul; 47():203-218. PubMed ID: 29778931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring convolutional neural networks with transfer learning for diagnosing Lyme disease from skin lesion images.
    Hossain SI; de Goër de Herve J; Hassan MS; Martineau D; Petrosyan E; Corbin V; Beytout J; Lebert I; Durand J; Carravieri I; Brun-Jacob A; Frey-Klett P; Baux E; Cazorla C; Eldin C; Hansmann Y; Patrat-Delon S; Prazuck T; Raffetin A; Tattevin P; Vourc'h G; Lesens O; Nguifo EM
    Comput Methods Programs Biomed; 2022 Mar; 215():106624. PubMed ID: 35051835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy.
    Urban G; Tripathi P; Alkayali T; Mittal M; Jalali F; Karnes W; Baldi P
    Gastroenterology; 2018 Oct; 155(4):1069-1078.e8. PubMed ID: 29928897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Study of Athlete Pose Estimation Techniques in Sports Game Videos Combining Multiresidual Module Convolutional Neural Networks.
    Liu R
    Comput Intell Neurosci; 2021; 2021():4367875. PubMed ID: 34992645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
    Tajbakhsh N; Shin JY; Gurudu SR; Hurst RT; Kendall CB; Gotway MB; Jianming Liang
    IEEE Trans Med Imaging; 2016 May; 35(5):1299-1312. PubMed ID: 26978662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image-based laparoscopic tool detection and tracking using convolutional neural networks: a review of the literature.
    Yang C; Zhao Z; Hu S
    Comput Assist Surg (Abingdon); 2020 Dec; 25(1):15-28. PubMed ID: 32886540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-field player workload exposure and knee injury risk monitoring via deep learning.
    Johnson WR; Mian A; Lloyd DG; Alderson JA
    J Biomech; 2019 Aug; 93():185-193. PubMed ID: 31307769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.
    Hu W; Zhang Y; Li L
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.