These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34283127)

  • 21. Cofopose: Conditional 2D Pose Estimation with Transformers.
    Aidoo E; Wang X; Liu Z; Tenagyei EK; Owusu-Agyemang K; Kodjiku SL; Ejianya VN; Aggrey ESEB
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A vision-based approach for fall detection using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset.
    Espinosa R; Ponce H; Gutiérrez S; Martínez-Villaseñor L; Brieva J; Moya-Albor E
    Comput Biol Med; 2019 Dec; 115():103520. PubMed ID: 31698242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimating Ground Reaction Forces from Two-Dimensional Pose Data: A Biomechanics-Based Comparison of AlphaPose, BlazePose, and OpenPose.
    Mundt M; Born Z; Goldacre M; Alderson J
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Human Knee Flexion Angle Estimation Using Deep Convolutional Neural Networks.
    Chalangari P; Fevens T; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5424-5427. PubMed ID: 33019207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal contexts for motion tracking in ultrasound sequences with information bottleneck.
    Sun M; Huang W; Zhang H; Shi Y; Wang J; Gong Q; Wang X
    Med Phys; 2023 Sep; 50(9):5553-5567. PubMed ID: 36866782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Convolutional Neural Networks for Automated Ulcer Detection in Wireless Capsule Endoscopy Images.
    Alaskar H; Hussain A; Al-Aseem N; Liatsis P; Al-Jumeily D
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30871162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time surgical instrument detection in robot-assisted surgery using a convolutional neural network cascade.
    Zhao Z; Cai T; Chang F; Cheng X
    Healthc Technol Lett; 2019 Dec; 6(6):275-279. PubMed ID: 32038871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MBT3D: Deep learning based multi-object tracker for bumblebee 3D flight path estimation.
    Stiemer LN; Thoma A; Braun C
    PLoS One; 2023; 18(9):e0291415. PubMed ID: 37738269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Color-CADx: a deep learning approach for colorectal cancer classification through triple convolutional neural networks and discrete cosine transform.
    Sharkas M; Attallah O
    Sci Rep; 2024 Mar; 14(1):6914. PubMed ID: 38519513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring biological motion perception in two-stream convolutional neural networks.
    Peng Y; Lee H; Shu T; Lu H
    Vision Res; 2021 Jan; 178():28-40. PubMed ID: 33091763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
    Fantini I; Yasuda C; Bento M; Rittner L; Cendes F; Lotufo R
    Comput Med Imaging Graph; 2021 Jun; 90():101897. PubMed ID: 33770561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Convolutional Neural Network for Real Time Classification, Identification, and Labelling of Vocal Cord and Tracheal Using Laryngoscopy and Bronchoscopy Video.
    Matava C; Pankiv E; Raisbeck S; Caldeira M; Alam F
    J Med Syst; 2020 Jan; 44(2):44. PubMed ID: 31897740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using Computer Vision to Automate Hand Detection and Tracking of Surgeon Movements in Videos of Open Surgery.
    Zhang M; Cheng X; Copeland D; Desai A; Guan MY; Brat GA; Yeung S
    AMIA Annu Symp Proc; 2020; 2020():1373-1382. PubMed ID: 34025905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Eye Tracking for Deep Learning Segmentation Using Convolutional Neural Networks.
    Stember JN; Celik H; Krupinski E; Chang PD; Mutasa S; Wood BJ; Lignelli A; Moonis G; Schwartz LH; Jambawalikar S; Bagci U
    J Digit Imaging; 2019 Aug; 32(4):597-604. PubMed ID: 31044392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Marker-Less Motion Capture of Insect Locomotion With Deep Neural Networks Pre-trained on Synthetic Videos.
    Arent I; Schmidt FP; Botsch M; Dürr V
    Front Behav Neurosci; 2021; 15():637806. PubMed ID: 33967713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. American Medical Society for Sports Medicine position statement: concussion in sport.
    Harmon KG; Drezner JA; Gammons M; Guskiewicz KM; Halstead M; Herring SA; Kutcher JS; Pana A; Putukian M; Roberts WO
    Br J Sports Med; 2013 Jan; 47(1):15-26. PubMed ID: 23243113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Convolutional neural network for automated mass segmentation in mammography.
    Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S
    BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep learning-based monocular placental pose estimation: towards collaborative robotics in fetoscopy.
    Ahmad MA; Ourak M; Gruijthuijsen C; Deprest J; Vercauteren T; Vander Poorten E
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1561-1571. PubMed ID: 32350788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of Moving Target Detection System Using Lightweight Deep Learning Model and Its Impact on the Development of Sports Industry.
    Zhang H; Zheng Y
    Comput Intell Neurosci; 2022; 2022():3252032. PubMed ID: 35909847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.