These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34283151)

  • 1. Molecular Monolayer Sensing Using Surface Plasmon Resonance and Angular Goos-Hänchen Shift.
    Olaya CM; Hayazawa N; Balois-Oguchi MV; Hermosa N; Tanaka T
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angular Goos-Hänchen Shift Sensor Using a Gold Film Enhanced by Surface Plasmon Resonance.
    Olaya CM; Hayazawa N; Hermosa N; Tanaka T
    J Phys Chem A; 2021 Jan; 125(1):451-458. PubMed ID: 33350831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant Goos-Hänchen Shifts in Au-ITO-TMDCs-Graphene Heterostructure and Its Potential for High Performance Sensor.
    Han L; Pan J; Wu C; Li K; Ding H; Ji Q; Yang M; Wang J; Zhang H; Huang T
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic measurement of an angular Goos-Hänchen shift at a surface plasmon resonance in liquid.
    Olaya CM; Hayazawa N; Balgos MH; Tanaka T
    Appl Opt; 2023 Nov; 62(31):8426-8433. PubMed ID: 38037948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Goos-Hänchen Shift Surface Plasmon Resonance Sensor Based on Graphene-hBN Heterostructure.
    Liu Z; Lu F; Jiang L; Lin W; Zheng Z
    Biosensors (Basel); 2021 Jun; 11(6):. PubMed ID: 34205540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable and enhanced Goos-Hänchen shift via surface plasmon resonance assisted by a coherent medium.
    Wan RG; Zubairy MS
    Opt Express; 2020 Mar; 28(5):6036-6047. PubMed ID: 32225861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Sensitivity Goos-Hänchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure.
    Han L; Hu Z; Pan J; Huang T; Luo D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32604852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large positive and negative Goos-Hänchen shifts near the surface plasmon resonance in subwavelength grating.
    Petrov NI; Danilov VA; Popov VV; Usievich BA
    Opt Express; 2020 Mar; 28(5):7552-7564. PubMed ID: 32225980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weak value amplification of an off-resonance Goos-Hänchen shift in a Kretschmann-Raether surface plasmon resonance device.
    Parks AD; Spence SE
    Appl Opt; 2015 Jun; 54(18):5872-6. PubMed ID: 26193042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weak measurement of magneto-optical Goos-Hänchen effect.
    Tang T; Li J; Luo L; Shen J; Li C; Qin J; Bi L; Hou J
    Opt Express; 2019 Jun; 27(13):17638-17647. PubMed ID: 31252720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced biosensing of tumor necrosis factor-alpha based on aptamer-functionalized surface plasmon resonance substrate and Goos-Hänchen shift.
    Borg KN; Jaffiol R; Ho YP; Zeng S
    Analyst; 2024 May; 149(10):3017-3025. PubMed ID: 38606503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy.
    Moon J; Kang T; Oh S; Hong S; Yi J
    J Colloid Interface Sci; 2006 Jun; 298(2):543-9. PubMed ID: 16458912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity Enhancement of Hybrid Two-Dimensional Nanomaterials-Based Surface Plasmon Resonance Biosensor.
    Zakirov N; Zhu S; Bruyant A; Lérondel G; Bachelot R; Zeng S
    Biosensors (Basel); 2022 Sep; 12(10):. PubMed ID: 36290947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical investigation of an enhanced Goos-Hänchen shift sensor based on a BlueP/TMDC/graphene hybrid.
    Ji Q; Yan B; Han L; Wang J; Yang M; Wu C
    Appl Opt; 2020 Sep; 59(27):8355-8361. PubMed ID: 32976422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The characterization of GH shifts of surface plasmon resonance in a waveguide using the FDTD method.
    Oh GY; Kim DG; Choi YW
    Opt Express; 2009 Nov; 17(23):20714-20. PubMed ID: 19997302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Goos-Hänchen shifts for Airy beams impinging on graphene-substrate surfaces.
    Zhen W; Deng D
    Opt Express; 2020 Aug; 28(16):24104-24114. PubMed ID: 32752396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Sensitive Plasmonic Biosensors with Precise Phase Singularity Coupling on the Metastructures.
    Youssef J; Zhu S; Crunteanu A; Orlianges JC; Ho HP; Bachelot R; Zeng S
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36291002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles.
    Yuan H; Ji W; Chu S; Qian S; Wang F; Masson JF; Han X; Peng W
    Biosens Bioelectron; 2018 Oct; 117():637-643. PubMed ID: 30005384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation-dependent beam profile distortion associated with the Goos-Hanchen shift.
    Wan Y; Zheng Z; Zhu J
    Opt Express; 2009 Nov; 17(23):21313-9. PubMed ID: 19997370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.