These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34283151)

  • 21. Upper-limited angular Goos-Hänchen shifts of Laguerre-Gaussian beams.
    Lin H; Zhu W; Yu J; Jiang M; Zhuo L; Qiu W; Dong J; Zhong Y; Chen Z
    Opt Express; 2018 Mar; 26(5):5810-5818. PubMed ID: 29529782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Giant and controllable Goos-Hänchen shift of monolayer graphene strips enabled by a multilayer dielectric grating structure.
    Zhang C; Hong Y; Li Z; Da H
    Appl Opt; 2022 Jan; 61(3):844-850. PubMed ID: 35200793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A label-free ultrasensitive microfluidic surface Plasmon resonance biosensor for Aflatoxin B
    Bhardwaj H; Sumana G; Marquette CA
    Food Chem; 2020 Mar; 307():125530. PubMed ID: 31639579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybridization of oligonucleotide by using DNA self-assembled monolayer.
    Sakao Y; Nakamura F; Ueno N; Hara M
    Colloids Surf B Biointerfaces; 2005 Feb; 40(3-4):149-52. PubMed ID: 15708504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays.
    Halpern AR; Chen Y; Corn RM; Kim D
    Anal Chem; 2011 Apr; 83(7):2801-6. PubMed ID: 21355546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly Sensitive Plasmonic Waveguide Biosensor Based on Phase Singularity-Enhanced Goos-Hänchen Shift.
    Hedhly M; Wang Y; Zeng S; Ouerghi F; Zhou J; Humbert G
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-Assembled Monolayer of Monomercaptoundecahydro-
    Jiménez-González ML; Rebolledo-Chávez JPF; Cruz-Ramírez M; Antaño R; Mendoza A; Hosmane NS; Ruiz-Azuara L; Hernández-López JL; Ortiz-Frade L
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-layer graphene-coated gold chip for electrochemical surface plasmon resonance study.
    Mei Y; Zhong C; Li L; Nong J; Wei W; Hu W
    Anal Bioanal Chem; 2019 Jul; 411(19):4577-4585. PubMed ID: 30450508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced sensitivity of self-assembled-monolayer-based SPR immunosensor for detection of benzaldehyde using a single-step multi-sandwich immunoassay.
    Gobi KV; Matsumoto K; Toko K; Ikezaki H; Miura N
    Anal Bioanal Chem; 2007 Apr; 387(8):2727-35. PubMed ID: 17318518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium.
    Oh BK; Kim YK; Park KW; Lee WH; Choi JW
    Biosens Bioelectron; 2004 Jun; 19(11):1497-504. PubMed ID: 15093222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Goos-Hänchen effect for surface plasmon polaritons.
    Huerkamp F; Leskova TA; Maradudin AA; Baumeier B
    Opt Express; 2011 Aug; 19(16):15483-9. PubMed ID: 21934911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Giant and highly reflective Goos-Hänchen shift in a metal-dielectric multilayer Fano structure.
    Saito H; Neo Y; Matsumoto T; Tomita M
    Opt Express; 2019 Sep; 27(20):28629-28639. PubMed ID: 31684611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of surface plasmon resonance immunosensor through metal ion affinity and mixed self-assembled monolayer.
    Lee S; Sim SJ; Park C; Gu MB; Hwang UY; Yi J; Oh BK; Lee J
    J Microbiol Biotechnol; 2008 Oct; 18(10):1695-700. PubMed ID: 18955822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collinear heterodyne interferometer technique for measuring Goos-Hänchen shift.
    Zhang W; Zhang Z
    Appl Opt; 2018 Nov; 57(31):9346-9350. PubMed ID: 30461974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable low-threshold bistable Goos-Hänchen shift and Imbert-Fedorov shift using long-range graphene surface plasmons within the terahertz region.
    Kar A; Goswami N; Saha A
    Appl Opt; 2019 Dec; 58(34):9376-9383. PubMed ID: 31873528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ surface plasmon resonance measurements of self-assembled monolayers of ferrocenylalkylthiols under constant potentials.
    Uematsu T; Kuwabata S
    Anal Sci; 2008 Mar; 24(3):307-12. PubMed ID: 18332535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenylalanine sensing based on surface plasmon resonance.
    Chen H; Lee J; Kim SH; Kim JH; Koh K
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7199-203. PubMed ID: 19908757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic Biosensing with Nano-Engineered Van der Waals Interfaces.
    Jiang L; Kong KV; He S; Yong KT
    Chempluschem; 2022 Nov; 87(11):e202200221. PubMed ID: 36328775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sub-monolayer silver loss from large gold nanospheres detected by surface plasmon resonance in the sigmoidal region.
    Lien J; Peck KA; Su M; Guo T
    J Colloid Interface Sci; 2016 Oct; 479():173-181. PubMed ID: 27388131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembled monolayer for low density lipoprotein detection.
    Matharu Z; Arya SK; Sumana G; Gupta V; Malhotra BD
    J Mol Recognit; 2008; 21(6):419-24. PubMed ID: 18844330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.