These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34283151)

  • 41. Sensitivity of transmission surface plasmon resonance (T-SPR) spectroscopy: self-assembled multilayers on evaporated gold island films.
    Doron-Mor I; Cohen H; Barkay Z; Shanzer A; Vaskevich A; Rubinstein I
    Chemistry; 2005 Sep; 11(19):5555-62. PubMed ID: 16007692
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control.
    Romanato F; Lee KH; Kang HK; Ruffato G; Wong CC
    Opt Express; 2009 Jul; 17(14):12145-54. PubMed ID: 19582129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular recognition of arginine by supramolecular complexation with calixarene crown ether based on surface plasmon resonance.
    Chen H; Gu L; Yin Y; Koh K; Lee J
    Int J Mol Sci; 2011; 12(4):2315-24. PubMed ID: 21731443
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensitivity enhancement of SPR biosensor with silver mirror reaction on the Ag/Au film.
    Wang L; Sun Y; Wang J; Zhu X; Jia F; Cao Y; Wang X; Zhang H; Song D
    Talanta; 2009 Apr; 78(1):265-9. PubMed ID: 19174236
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probing photoelectrochemical processes in Au-CdS nanoparticle arrays by surface plasmon resonance: application for the detection of acetylcholine esterase inhibitors.
    Zayats M; Kharitonov AB; Pogorelova SP; Lioubashevski O; Katz E; Willner I
    J Am Chem Soc; 2003 Dec; 125(51):16006-14. PubMed ID: 14677992
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biological sensing using transmission surface plasmon resonance spectroscopy.
    Lahav M; Vaskevich A; Rubinstein I
    Langmuir; 2004 Aug; 20(18):7365-7. PubMed ID: 15323475
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced Goos-Hänchen shift in a defective Pell quasiperiodic photonic crystal with monolayer MoS
    Yang X; Liao Z; Chu Z; Zhu X; Da H
    Appl Opt; 2023 Aug; 62(22):5861-5866. PubMed ID: 37706934
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of octadecanethiol self-assembled monolayer to cholesterol biosensor based on surface plasmon resonance technique.
    Arya SK; Solanki PR; Singh RP; Pandey MK; Datta M; Malhotra BD
    Talanta; 2006 Jun; 69(4):918-26. PubMed ID: 18970658
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Poly-(3-hexylthiophene) self-assembled monolayer based cholesterol biosensor using surface plasmon resonance technique.
    Arya SK; Solanki PR; Singh SP; Kaneto K; Pandey MK; Datta M; Malhotra BD
    Biosens Bioelectron; 2007 May; 22(11):2516-24. PubMed ID: 17113279
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Laser-induced thermal effect in surface plasmon resonance.
    Xiao X; Gao Y; Xiang J; Zhou F
    Anal Chim Acta; 2010 Aug; 676(1-2):75-80. PubMed ID: 20800745
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-assembled monolayer for toxicant detection using nucleic acid sensor based on surface plasmon resonance technique.
    Solanki PR; Prabhakar N; Pandey MK; Malhotra BD
    Biomed Microdevices; 2008 Oct; 10(5):757-67. PubMed ID: 18574694
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tunable Goos-Hänchen shift from graphene ribbon array.
    Zeng X; Al-Amri M; Zubairy MS
    Opt Express; 2017 Oct; 25(20):23579-23588. PubMed ID: 29041309
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface characterization and efficiency of a matrix-free and flat carboxylated gold sensor chip for surface plasmon resonance (SPR).
    Roussille L; Brotons G; Ballut L; Louarn G; Ausserré D; Ricard-Blum S
    Anal Bioanal Chem; 2011 Sep; 401(5):1601-17. PubMed ID: 21755270
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces.
    Soboleva IV; Moskalenko VV; Fedyanin AA
    Phys Rev Lett; 2012 Mar; 108(12):123901. PubMed ID: 22540582
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemical thinning of thicker gold film with qualified thickness for surface plasmon resonance sensing.
    Wang J; Shao Y; Jin Y; Wang F; Dong S
    Anal Chem; 2005 Sep; 77(17):5760-5. PubMed ID: 16131093
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimized weak measurements of Goos-Hänchen and Imbert-Fedorov shifts in partial reflection.
    Goswami S; Dhara S; Pal M; Nandi A; Panigrahi PK; Ghosh N
    Opt Express; 2016 Mar; 24(6):6041-51. PubMed ID: 27136798
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrochemically controlled assembly and logic gates operations of gold nanoparticle arrays.
    Frasconi M; Mazzei F
    Langmuir; 2012 Feb; 28(6):3322-31. PubMed ID: 22225408
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Temperature controllable Goos-Hänchen shift and high reflectance of monolayer graphene induced by BK7 glass grating.
    Lu D; Shanshan M; Zhu X; Da H
    Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 35994973
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual-mode surface plasmon resonance sensor chip using a grating 3D-printed prism.
    Lertvachirapaiboon C; Baba A; Shinbo K; Kato K
    Anal Chim Acta; 2021 Feb; 1147():23-29. PubMed ID: 33485581
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Colloidal Au-enhanced surface plasmon resonance immunosensing.
    Lyon LA; Musick MD; Natan MJ
    Anal Chem; 1998 Dec; 70(24):5177-83. PubMed ID: 9868916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.