BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 34283270)

  • 1. Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid.
    Zhou P; Yue C; Shen B; Du Y; Xu N; Ye L
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5809-5819. PubMed ID: 34283270
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Li Y; Mao J; Liu Q; Song X; Wu Y; Cai M; Xu H; Qiao M
    ACS Synth Biol; 2020 Apr; 9(4):756-765. PubMed ID: 32155331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides.
    Wang J; Mahajani M; Jackson SL; Yang Y; Chen M; Ferreira EM; Lin Y; Yan Y
    Metab Eng; 2017 Nov; 44():89-99. PubMed ID: 28943460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution and Optimization of the Marmesin Biosynthetic Pathway in Yeast.
    Wang Z; Zhou Y; Wang Y; Yan X
    ACS Synth Biol; 2023 Oct; 12(10):2922-2933. PubMed ID: 37767718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient biosynthesis of resveratrol via combining phenylalanine and tyrosine pathways in Saccharomyces cerevisiae.
    Meng L; Diao M; Wang Q; Peng L; Li J; Xie N
    Microb Cell Fact; 2023 Mar; 22(1):46. PubMed ID: 36890537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast Metabolic Engineering for Biosynthesis of Caffeic Acid-Derived Phenethyl Ester and Phenethyl Amide.
    Jia ZC; Liu D; Ma HD; Cui YH; Li HM; Li X; Yuan YJ
    ACS Synth Biol; 2023 Dec; 12(12):3635-3645. PubMed ID: 38016187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Saccharomyces cerevisiae for isoprenol production.
    Kim J; Baidoo EEK; Amer B; Mukhopadhyay A; Adams PD; Simmons BA; Lee TS
    Metab Eng; 2021 Mar; 64():154-166. PubMed ID: 33581331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Engineering of
    Xiao F; Lian J; Tu S; Xie L; Li J; Zhang F; Linhardt RJ; Huang H; Zhong W
    ACS Synth Biol; 2022 Feb; 11(2):800-811. PubMed ID: 35107250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose.
    Shen L; Nishimura Y; Matsuda F; Ishii J; Kondo A
    J Biosci Bioeng; 2016 Jul; 122(1):34-9. PubMed ID: 26975754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae.
    Chai F; Wang Y; Mei X; Yao M; Chen Y; Liu H; Xiao W; Yuan Y
    Microb Cell Fact; 2017 Mar; 16(1):54. PubMed ID: 28356104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast.
    Chen R; Gao J; Yu W; Chen X; Zhai X; Chen Y; Zhang L; Zhou YJ
    Nat Chem Biol; 2022 May; 18(5):520-529. PubMed ID: 35484257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Multiple Strategies To Debottleneck the Biosynthesis of Longifolene by Engineered
    Xia F; Du J; Wang K; Liu L; Ba L; Liu H; Liu Y
    J Agric Food Chem; 2022 Sep; 70(36):11336-11343. PubMed ID: 36047715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex.
    Lin Y; Yan Y
    Microb Cell Fact; 2012 Apr; 11():42. PubMed ID: 22475509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae.
    Zhao Y; Zuo F; Shu Q; Yang X; Deng Y
    Appl Environ Microbiol; 2023 Jun; 89(6):e0053523. PubMed ID: 37212714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Construction and optimization of p-coumaric acid-producing Saccharomyces cerevisiae].
    Zhang S; Zhou J; Zhang G; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2020 Sep; 36(9):1838-1848. PubMed ID: 33164460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of Naringenin Biosynthesis from Tyrosine by Metabolic Engineering of Saccharomyces cerevisiae.
    Lyu X; Ng KR; Lee JL; Mark R; Chen WN
    J Agric Food Chem; 2017 Aug; 65(31):6638-6646. PubMed ID: 28707470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo biosynthesis of p-coumaric acid and caffeic acid from carboxymethyl-cellulose by microbial co-culture strategy.
    Cai M; Liu J; Song X; Qi H; Li Y; Wu Z; Xu H; Qiao M
    Microb Cell Fact; 2022 May; 21(1):81. PubMed ID: 35538542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.
    Koopman F; Beekwilder J; Crimi B; van Houwelingen A; Hall RD; Bosch D; van Maris AJ; Pronk JT; Daran JM
    Microb Cell Fact; 2012 Dec; 11():155. PubMed ID: 23216753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.