These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34283325)

  • 1. Self-propulsion in 2D confinement: phoretic and hydrodynamic interactions.
    Choudhary A; Chaithanya KVS; Michelin S; Pushpavanam S
    Eur Phys J E Soft Matter; 2021 Jul; 44(7):97. PubMed ID: 34283325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering.
    Uspal WE; Popescu MN; Dietrich S; Tasinkevych M
    Soft Matter; 2015 Jan; 11(3):434-8. PubMed ID: 25466926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective Interactions between Chemically Active Colloids and Interfaces.
    Popescu MN; Uspal WE; Domínguez A; Dietrich S
    Acc Chem Res; 2018 Dec; 51(12):2991-2997. PubMed ID: 30403132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Floor- or Ceiling-Sliding for Chemically Active, Gyrotactic, Sedimenting Janus Particles.
    Das S; Jalilvand Z; Popescu MN; Uspal WE; Dietrich S; Kretzschmar I
    Langmuir; 2020 Jun; 36(25):7133-7147. PubMed ID: 31986887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orbits, Spirals, and Trapped States: Dynamics of a Phoretic Janus Particle in a Radial Concentration Gradient.
    Bayati P; Mallory SA
    ACS Nano; 2024 Aug; 18(34):23047-23057. PubMed ID: 39137334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phoretic and hydrodynamic interactions of weakly confined autophoretic particles.
    Kanso E; Michelin S
    J Chem Phys; 2019 Jan; 150(4):044902. PubMed ID: 30709320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic simulations of self-phoretic microswimmers.
    Yang M; Wysocki A; Ripoll M
    Soft Matter; 2014 Sep; 10(33):6208-18. PubMed ID: 25012361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients.
    Popescu MN; Uspal WE; Dietrich S
    J Phys Condens Matter; 2017 Apr; 29(13):134001. PubMed ID: 28140364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic interactions between squirmers near walls: far-field dynamics and near-field cluster stability.
    Théry A; Maaß CC; Lauga E
    R Soc Open Sci; 2023 Jun; 10(6):230223. PubMed ID: 37388310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics near planar walls for various model self-phoretic particles.
    Bayati P; Popescu MN; Uspal WE; Dietrich S; Najafi A
    Soft Matter; 2019 Jul; 15(28):5644-5672. PubMed ID: 31245803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective squirmer models for self-phoretic chemically active spherical colloids.
    Popescu MN; Uspal WE; Eskandari Z; Tasinkevych M; Dietrich S
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):145. PubMed ID: 30569319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Janus colloids at chemically structured surfaces.
    Uspal WE; Popescu MN; Dietrich S; Tasinkevych M
    J Chem Phys; 2019 May; 150(20):204904. PubMed ID: 31153178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustering-induced self-propulsion of isotropic autophoretic particles.
    Varma A; Montenegro-Johnson TD; Michelin S
    Soft Matter; 2018 Sep; 14(35):7155-7173. PubMed ID: 30058650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Understanding of Self-Electrophoretic Propulsion under Realistic Conditions: From Bulk Reactions to Confinement Effects.
    Kuron M; Kreissl P; Holm C
    Acc Chem Res; 2018 Dec; 51(12):2998-3005. PubMed ID: 30417644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering of microswimmers: interplay of shape and hydrodynamics.
    Theers M; Westphal E; Qi K; Winkler RG; Gompper G
    Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental observation of flow fields around active Janus spheres.
    Campbell AI; Ebbens SJ; Illien P; Golestanian R
    Nat Commun; 2019 Sep; 10(1):3952. PubMed ID: 31477703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic interaction of a self-propelling particle with a wall : Comparison between an active Janus particle and a squirmer model.
    Shen Z; Würger A; Lintuvuori JS
    Eur Phys J E Soft Matter; 2018 Mar; 41(3):39. PubMed ID: 29594924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic capture of microswimmers into sphere-bound orbits.
    Takagi D; Palacci J; Braunschweig AB; Shelley MJ; Zhang J
    Soft Matter; 2014 Mar; 10(11):1784-9. PubMed ID: 24800268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic mobility reversal of squirmers near flat and curved surfaces.
    Kuron M; Stärk P; Holm C; de Graaf J
    Soft Matter; 2019 Jul; 15(29):5908-5920. PubMed ID: 31282522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Chemotaxis of Self-Phoretic Active Colloids: Collective Behavior.
    Stark H
    Acc Chem Res; 2018 Nov; 51(11):2681-2688. PubMed ID: 30346724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.