These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34283595)

  • 1. Interstrand Aminoacyl Transfer in a tRNA Acceptor Stem-Overhang Mimic.
    Wu LF; Su M; Liu Z; Bjork SJ; Sutherland JD
    J Am Chem Soc; 2021 Aug; 143(30):11836-11842. PubMed ID: 34283595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triplet-Encoded Prebiotic RNA Aminoacylation.
    Su M; Schmitt C; Liu Z; Roberts SJ; Liu KC; Röder K; Jäschke A; Wales DJ; Sutherland JD
    J Am Chem Soc; 2023 Jul; 145(29):15971-15980. PubMed ID: 37435826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentially Prebiotic Synthesis of Aminoacyl-RNA via a Bridging Phosphoramidate-Ester Intermediate.
    Roberts SJ; Liu Z; Sutherland JD
    J Am Chem Soc; 2022 Mar; 144(9):4254-4259. PubMed ID: 35230111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-directed peptide synthesis across a nicked loop.
    Su M; Roberts SJ; Sutherland JD
    Nucleic Acids Res; 2024 Oct; 52(19):11415-11422. PubMed ID: 39164017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic aminoacylation of ribonucleotides and RNA with aminoacyl phosphate esters and lanthanum salts.
    Tzvetkova S; Kluger R
    J Am Chem Soc; 2007 Dec; 129(51):15848-54. PubMed ID: 18052163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A potential role for RNA aminoacylation prior to its role in peptide synthesis.
    Radakovic A; Lewicka A; Todisco M; Aitken HRM; Weiss Z; Kim S; Bannan A; Piccirilli JA; Szostak JW
    Proc Natl Acad Sci U S A; 2024 Aug; 121(35):e2410206121. PubMed ID: 39178230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the CCA end of tRNA and its vicinity in aminoacylation.
    Tamura K; Hasegawa T
    Nucleic Acids Symp Ser; 1997; (37):133-4. PubMed ID: 9586035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aminoacylation of RNA minihelices: implications for tRNA synthetase structural design and evolution.
    Buechter DD; Schimmel P
    Crit Rev Biochem Mol Biol; 1993; 28(4):309-22. PubMed ID: 7691478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the role of the acceptor stem in the interactions between tRNAs and aminoacyl-tRNA synthetases.
    Bonnet J; Befort N; Bollack C; Fasiolo F; Ebel JP
    Nucleic Acids Res; 1975 Feb; 2(2):211-21. PubMed ID: 1091915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA scaffolds for minihelix-based aminoacyl transfer: design of "transpeptizymes".
    Sardesai NY; Stagg SM; Vanloock MS; Harvey SC; Schimmel P
    J Biomol Struct Dyn; 2000; 17 Suppl 1():29-37. PubMed ID: 22607404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prebiotic Assembly of Cloverleaf tRNA, Its Aminoacylation and the Origin of Coding, Inferred from Acceptor Stem Coding-Triplets.
    Agmon I
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic aminoacylation of sequence-specific RNA minihelices and hybrid duplexes with methionine.
    Martinis SA; Schimmel P
    Proc Natl Acad Sci U S A; 1992 Jan; 89(1):65-9. PubMed ID: 1729719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radial scan of the molecular electrostatic potential of RNA double helices: an application to the enzyme-tRNA recognition.
    Marín RM; Agudelo WA; Daza C EE
    J Mol Graph Model; 2008 Oct; 27(3):255-65. PubMed ID: 18586541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme.
    Xiao H; Murakami H; Suga H; Ferré-D'Amaré AR
    Nature; 2008 Jul; 454(7202):358-61. PubMed ID: 18548004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncanonical inputs and outputs of tRNA aminoacylation.
    Hemmerle M; Wendenbaum M; Grob G; Yakobov N; Mahmoudi N; Senger B; Debard S; Fischer F; Becker HD
    Enzymes; 2020; 48():117-147. PubMed ID: 33837702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small RNA helices as substrates for aminoacylation and their relationship to charging of transfer RNAs.
    Francklyn C; Musier-Forsyth K; Schimmel P
    Eur J Biochem; 1992 Jun; 206(2):315-21. PubMed ID: 1375910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexizymes: their evolutionary history and the origin of catalytic function.
    Morimoto J; Hayashi Y; Iwasaki K; Suga H
    Acc Chem Res; 2011 Dec; 44(12):1359-68. PubMed ID: 21711008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aminoacyl transfer from an adenylate anhydride to polyribonucleotides.
    Weber AL; Lacey JC
    J Mol Evol; 1975 Dec; 6(4):309-20. PubMed ID: 1544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resampling and editing of mischarged tRNA prior to translation elongation.
    Ling J; So BR; Yadavalli SS; Roy H; Shoji S; Fredrick K; Musier-Forsyth K; Ibba M
    Mol Cell; 2009 Mar; 33(5):654-60. PubMed ID: 19285947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.