These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34283611)

  • 21. Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins.
    Cho CP; Lin SC; Chou MY; Hsu HT; Chang KY
    PLoS One; 2013; 8(4):e62283. PubMed ID: 23638024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus.
    Ishimaru D; Plant EP; Sims AC; Yount BL; Roth BM; Eldho NV; Pérez-Alvarado GC; Armbruster DW; Baric RS; Dinman JD; Taylor DR; Hennig M
    Nucleic Acids Res; 2013 Feb; 41(4):2594-608. PubMed ID: 23275571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers.
    Neupane K; Zhao M; Lyons A; Munshi S; Ileperuma SM; Ritchie DB; Hoffer NQ; Narayan A; Woodside MT
    Nat Commun; 2021 Aug; 12(1):4749. PubMed ID: 34362921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA sequence and ligand binding alter conformational profile of SARS-CoV-2 stem loop II motif.
    Aldhumani AH; Hossain MI; Fairchild EA; Boesger H; Marino EC; Myers M; Hines JV
    Biochem Biophys Res Commun; 2021 Mar; 545():75-80. PubMed ID: 33545635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformation of a non-frameshifting RNA pseudoknot from mouse mammary tumor virus.
    Kang H; Hines JV; Tinoco I
    J Mol Biol; 1996 May; 259(1):135-47. PubMed ID: 8648641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of RNA pseudoknot-binding ligand that inhibits the -1 ribosomal frameshifting of SARS-coronavirus by structure-based virtual screening.
    Park SJ; Kim YG; Park HJ
    J Am Chem Soc; 2011 Jul; 133(26):10094-100. PubMed ID: 21591761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus.
    Su MC; Chang CT; Chu CH; Tsai CH; Chang KY
    Nucleic Acids Res; 2005; 33(13):4265-75. PubMed ID: 16055920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shapify: Paths to SARS-CoV-2 frameshifting pseudoknot.
    Trinity L; Wark I; Lansing L; Jabbari H; Stege U
    PLoS Comput Biol; 2023 Feb; 19(2):e1010922. PubMed ID: 36854032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of a luteoviral RNA pseudoknot and model for a minimal ribosomal frameshifting motif.
    Pallan PS; Marshall WS; Harp J; Jewett FC; Wawrzak Z; Brown BA; Rich A; Egli M
    Biochemistry; 2005 Aug; 44(34):11315-22. PubMed ID: 16114868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Programmed ribosomal frameshifting in decoding the SARS-CoV genome.
    Baranov PV; Henderson CM; Anderson CB; Gesteland RF; Atkins JF; Howard MT
    Virology; 2005 Feb; 332(2):498-510. PubMed ID: 15680415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A characteristic bent conformation of RNA pseudoknots promotes -1 frameshifting during translation of retroviral RNA.
    Chen X; Kang H; Shen LX; Chamorro M; Varmus HE; Tinoco I
    J Mol Biol; 1996 Jul; 260(4):479-83. PubMed ID: 8759314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome.
    Zhang K; Zheludev IN; Hagey RJ; Haslecker R; Hou YJ; Kretsch R; Pintilie GD; Rangan R; Kladwang W; Li S; Wu MT; Pham EA; Bernardin-Souibgui C; Baric RS; Sheahan TP; D'Souza V; Glenn JS; Chiu W; Das R
    Nat Struct Mol Biol; 2021 Sep; 28(9):747-754. PubMed ID: 34426697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutational analysis of the RNA pseudoknot involved in efficient ribosomal frameshifting in simian retrovirus-1.
    Sung D; Kang H
    Nucleic Acids Res; 1998 Mar; 26(6):1369-72. PubMed ID: 9490779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal.
    Plant EP; Pérez-Alvarado GC; Jacobs JL; Mukhopadhyay B; Hennig M; Dinman JD
    PLoS Biol; 2005 Jun; 3(6):e172. PubMed ID: 15884978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site.
    Wang Y; Wills NM; Du Z; Rangan A; Atkins JF; Gesteland RF; Hoffman DW
    RNA; 2002 Aug; 8(8):981-96. PubMed ID: 12212853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting.
    Sun Y; Abriola L; Niederer RO; Pedersen SF; Alfajaro MM; Silva Monteiro V; Wilen CB; Ho YC; Gilbert WV; Surovtseva YV; Lindenbach BD; Guo JU
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34185680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication.
    Ahn DG; Lee W; Choi JK; Kim SJ; Plant EP; Almazán F; Taylor DR; Enjuanes L; Oh JW
    Antiviral Res; 2011 Jul; 91(1):1-10. PubMed ID: 21549154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tertiary Base Triple Formation in the SRV-1 Frameshifting Pseudoknot Stabilizes Secondary Structure Components.
    Yang L; Toh DK; Krishna MS; Zhong Z; Liu Y; Wang S; Gong Y; Chen G
    Biochemistry; 2020 Nov; 59(46):4429-4438. PubMed ID: 33166472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2).
    Kelly JA; Olson AN; Neupane K; Munshi S; San Emeterio J; Pollack L; Woodside MT; Dinman JD
    J Biol Chem; 2020 Jul; 295(31):10741-10748. PubMed ID: 32571880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo structure and dynamics of the SARS-CoV-2 RNA genome.
    Zhang Y; Huang K; Xie D; Lau JY; Shen W; Li P; Wang D; Zou Z; Shi S; Ren H; Wang Y; Mao Y; Jin M; Kudla G; Zhao Z
    Nat Commun; 2021 Sep; 12(1):5695. PubMed ID: 34584097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.