These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34283829)

  • 1. Rigid-body fitting to atomic force microscopy images for inferring probe shape and biomolecular structure.
    Niina T; Matsunaga Y; Takada S
    PLoS Comput Biol; 2021 Jul; 17(7):e1009215. PubMed ID: 34283829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Fitting of Biomolecular Structures to Atomic Force Microscopy Images via Biased Molecular Simulations.
    Niina T; Fuchigami S; Takada S
    J Chem Theory Comput; 2020 Feb; 16(2):1349-1358. PubMed ID: 31909999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BioAFMviewer: An interactive interface for simulated AFM scanning of biomolecular structures and dynamics.
    Amyot R; Flechsig H
    PLoS Comput Biol; 2020 Nov; 16(11):e1008444. PubMed ID: 33206646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation atomic force microscopy for atomic reconstruction of biomolecular structures from resolution-limited experimental images.
    Amyot R; Marchesi A; Franz CM; Casuso I; Flechsig H
    PLoS Comput Biol; 2022 Mar; 18(3):e1009970. PubMed ID: 35294442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of the actin filament by tip-scan atomic force microscopy.
    Narita A; Usukura E; Yagi A; Tateyama K; Akizuki S; Kikumoto M; Matsumoto T; Maéda Y; Ito S; Usukura J
    Microscopy (Oxf); 2016 Aug; 65(4):370-7. PubMed ID: 27242058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Case Report: Bayesian Statistical Inference of Experimental Parameters via Biomolecular Simulations: Atomic Force Microscopy.
    Fuchigami S; Niina T; Takada S
    Front Mol Biosci; 2021; 8():636940. PubMed ID: 33778008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. End-to-end differentiable blind tip reconstruction for noisy atomic force microscopy images.
    Matsunaga Y; Fuchigami S; Ogane T; Takada S
    Sci Rep; 2023 Jan; 13(1):129. PubMed ID: 36599879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of low-resolution molecular structures from simulated atomic force microscopy images.
    Dasgupta B; Miyashita O; Tama F
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129420. PubMed ID: 31472175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring Conformational State of Myosin Motor in an Atomic Force Microscopy Image
    Fuchigami S; Takada S
    Front Mol Biosci; 2022; 9():882989. PubMed ID: 35573735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanical response of the actomyosin cortex during cell indentations.
    Ferreira JPS; Kuang M; Marques M; Parente MPL; Damaser MS; Natal Jorge RM
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2061-2079. PubMed ID: 32356071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of hidden Markov modeling method for molecular orientations and structure estimation from high-speed atomic force microscopy time-series images.
    Ogane T; Noshiro D; Ando T; Yamashita A; Sugita Y; Matsunaga Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010384. PubMed ID: 36580448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed AFM and applications to biomolecular systems.
    Ando T; Uchihashi T; Kodera N
    Annu Rev Biophys; 2013; 42():393-414. PubMed ID: 23541159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Conformational Transitions of Biomolecules from Atomic Force Microscopy Images using Normal Mode Analysis.
    Wu X; Miyashita O; Tama F
    J Phys Chem B; 2024 Oct; 128(39):9363-9372. PubMed ID: 39319845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially and temporally synchronized atomic force and total internal reflection fluorescence microscopy for imaging and manipulating cells and biomolecules.
    Kellermayer MS; Karsai A; Kengyel A; Nagy A; Bianco P; Huber T; Kulcsár A; Niedetzky C; Proksch R; Grama L
    Biophys J; 2006 Oct; 91(7):2665-77. PubMed ID: 16861276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes.
    Uchihashi T; Scheuring S
    Biochim Biophys Acta Gen Subj; 2018 Feb; 1862(2):229-240. PubMed ID: 28716648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Application of molecular dynamics simulation to the interpretation of atomic force microscopy data].
    Godzi MG; Tolstova AP; Oferkin IV
    Biofizika; 2010; 55(3):415-23. PubMed ID: 20586320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle Filter Method to Integrate High-Speed Atomic Force Microscopy Measurements with Biomolecular Simulations.
    Fuchigami S; Niina T; Takada S
    J Chem Theory Comput; 2020 Oct; 16(10):6609-6619. PubMed ID: 32805119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy and proteins.
    da Silva LP
    Protein Pept Lett; 2002 Apr; 9(2):117-26. PubMed ID: 12141908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies.
    Umakoshi T; Fukuda S; Iino R; Uchihashi T; Ando T
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129325. PubMed ID: 30890438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization atomic force microscopy.
    Heath GR; Kots E; Robertson JL; Lansky S; Khelashvili G; Weinstein H; Scheuring S
    Nature; 2021 Jun; 594(7863):385-390. PubMed ID: 34135520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.