BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 34284027)

  • 21. Identification of different trypanosome species in the mid-guts of tsetse flies of the Malanga (Kimpese) sleeping sickness focus of the Democratic Republic of Congo.
    Simo G; Silatsa B; Flobert N; Lutumba P; Mansinsa P; Madinga J; Manzambi E; De Deken R; Asonganyi T
    Parasit Vectors; 2012 Sep; 5():201. PubMed ID: 22992486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantifying Heterogeneity in Host-Vector Contact: Tsetse (Glossina swynnertoni and G. pallidipes) Host Choice in Serengeti National Park, Tanzania.
    Auty H; Cleaveland S; Malele I; Masoy J; Lembo T; Bessell P; Torr S; Picozzi K; Welburn SC
    PLoS One; 2016; 11(10):e0161291. PubMed ID: 27706167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tsetse-trypanosome interactions: rites of passage.
    Welburn SC; Maudlin I
    Parasitol Today; 1999 Oct; 15(10):399-403. PubMed ID: 10481151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological and proteomic profiles of Trypanosoma brucei rhodesiense parasite isolated from suramin responsive and non-responsive HAT patients in Busoga, Uganda.
    Mutuku CN; Bateta R; Rono MK; Njunge JM; Awuoche EO; Ndung'u K; Mang'era CM; Akoth MO; Adung'a VO; Ondigo BN; Mireji PO
    Int J Parasitol Drugs Drug Resist; 2021 Apr; 15():57-67. PubMed ID: 33588295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tsetse Flies (Glossina) as Vectors of Human African Trypanosomiasis: A Review.
    Wamwiri FN; Changasi RE
    Biomed Res Int; 2016; 2016():6201350. PubMed ID: 27034944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense.
    Radwanska M; Chamekh M; Vanhamme L; Claes F; Magez S; Magnus E; de Baetselier P; Büscher P; Pays E
    Am J Trop Med Hyg; 2002 Dec; 67(6):684-90. PubMed ID: 12518862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transmissibility of Trypanosoma brucei during its development in cattle.
    Van den Bossche P; Ky-Zerbo A; Brandt J; Marcotty T; Geerts S; De Deken R
    Trop Med Int Health; 2005 Sep; 10(9):833-9. PubMed ID: 16135189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of the inhibitor of serine peptidase 2 (ISP2) of Trypanosoma brucei rhodesiense in parasite virulence and modulation of the inflammatory responses of the host.
    Levy DJ; Goundry A; Laires RSS; Costa TFR; Novo CM; Grab DJ; Mottram JC; Lima APCA
    PLoS Negl Trop Dis; 2021 Jun; 15(6):e0009526. PubMed ID: 34153047
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of molecular technology to investigate trypanosome infections in tsetse flies at Liwonde Wild Life Reserve.
    Nayupe SF; Simwela NV; Kamanga PM; Chisi JE; Senga E; Musaya J; Maganga E
    Malawi Med J; 2019 Dec; 31(4):233-237. PubMed ID: 32133052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A spectrum of disease in human African trypanosomiasis: the host and parasite genetics of virulence.
    Sternberg JM; Maclean L
    Parasitology; 2010 Dec; 137(14):2007-15. PubMed ID: 20663245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Occurrence of multiple drug resistance in Trypanosoma brucei rhodesiense isolated from sleeping sickness patients.
    Kagira JM; Maina N
    Onderstepoort J Vet Res; 2007 Mar; 74(1):17-22. PubMed ID: 17708149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study on the sequential tsetse-transmitted Trypanosoma congolense, T. brucei brucei and T. vivax infections to African buffalo, eland, waterbuck, N'Dama and Boran cattle.
    Moloo SK; Orinda GO; Sabwa CL; Minja SH; Masake RA
    Vet Parasitol; 1999 Jan; 80(3):197-213. PubMed ID: 9950344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human African trypanosomiasis: clinical presentation and immune response.
    Sternberg JM
    Parasite Immunol; 2004; 26(11-12):469-76. PubMed ID: 15771682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aggravation of pathogenesis mediated by ochratoxin A in mice infected with Trypanosoma brucei rhodesiense.
    Kibugu JK; Ngeranwa JJ; Makumi JN; Gathumbi JK; Kagira JM; Mwangi JN; Muchiri MW; Mdachi RE
    Parasitology; 2009 Mar; 136(3):273-81. PubMed ID: 19154650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Production of
    Özbilgin A; Çavuş İ; Nuraydın A; Özel Y
    Turkiye Parazitol Derg; 2020 Mar; 44(1):7-11. PubMed ID: 32212582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glossina fuscipes populations provide insights for human African trypanosomiasis transmission in Uganda.
    Aksoy S; Caccone A; Galvani AP; Okedi LM
    Trends Parasitol; 2013 Aug; 29(8):394-406. PubMed ID: 23845311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyclical transmission of Trypanosoma brucei rhodesiense and Trypanosoma congolense by tsetse flies infected with culture-form procyclic trypanosomes.
    Evans DA
    J Protozool; 1979 Aug; 26(3):425-7. PubMed ID: 536930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial distribution and trypanosome infection of tsetse flies in the sleeping sickness focus of Zimbabwe in Hurungwe District.
    Shereni W; Anderson NE; Nyakupinda L; Cecchi G
    Parasit Vectors; 2016 Nov; 9(1):605. PubMed ID: 27884172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterisation of the Trypanosoma brucei rhodesiense isolates from Tanzania using serum resistance associated gene as molecular marker.
    Kibona SN; Picozzi K; Matemba L; Lubega GW
    Tanzan Health Res Bull; 2007 Jan; 9(1):25-31. PubMed ID: 17547097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of phenoloxidase activity in the hemolymph of tsetse flies, refractory and susceptible to infection with Trypanosoma brucei rhodesiense.
    Nigam Y; Maudlin I; Welburn S; Ratcliffe NA
    J Invertebr Pathol; 1997 May; 69(3):279-81. PubMed ID: 9170349
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.