These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34284221)

  • 1. Modelling of energy metabolism and analysis of pH variations in postmortem muscle.
    Wang C; Matarneh SK; Gerrard D; Tan J
    Meat Sci; 2021 Dec; 182():108634. PubMed ID: 34284221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered AMP deaminase activity may extend postmortem glycolysis.
    England EM; Matarneh SK; Scheffler TL; Wachet C; Gerrard DE
    Meat Sci; 2015 Apr; 102():8-14. PubMed ID: 25498483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH inactivation of phosphofructokinase arrests postmortem glycolysis.
    England EM; Matarneh SK; Scheffler TL; Wachet C; Gerrard DE
    Meat Sci; 2014 Dec; 98(4):850-7. PubMed ID: 25179446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ractopamine changes in pork quality are not mediated by changes in muscle glycogen or lactate accumulation postmortem.
    Guo Q; Wicks JC; Yen CN; Scheffler TL; Richert BT; Schinckel AP; Grant AL; Gerrard DE
    Meat Sci; 2021 Apr; 174():108418. PubMed ID: 33454640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of histidine dipeptides on postmortem acidification of broiler muscles with different energy metabolism.
    Baldi G; Soglia F; Laghi L; Meluzzi A; Petracci M
    Poult Sci; 2021 Feb; 100(2):1299-1307. PubMed ID: 33518087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. At physiological concentrations, AMP increases phosphofructokinase-1 activity compared to fructose 2, 6-bisphosphate in postmortem porcine skeletal muscle.
    Chauhan SS; LeMaster M; England EM
    Meat Sci; 2021 Feb; 172():108332. PubMed ID: 33038798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial F
    Matarneh SK; Beline M; de Luz E Silva S; Shi H; Gerrard DE
    Meat Sci; 2018 Mar; 137():85-91. PubMed ID: 29154223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphofructokinase and mitochondria partially explain the high ultimate pH of broiler pectoralis major muscle.
    Matarneh SK; Yen CN; Elgin JM; Beline M; da Luz E Silva S; Wicks JC; England EM; Dalloul RA; Persia ME; Omara II; Shi H; Gerrard DE
    Poult Sci; 2018 May; 97(5):1808-1817. PubMed ID: 29635634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondria influence postmortem metabolism and pH in an in vitro model.
    Scheffler TL; Matarneh SK; England EM; Gerrard DE
    Meat Sci; 2015 Dec; 110():118-25. PubMed ID: 26209819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mitochondrial protein increases glycolytic flux.
    Matarneh SK; England EM; Scheffler TL; Yen CN; Wicks JC; Shi H; Gerrard DE
    Meat Sci; 2017 Nov; 133():119-125. PubMed ID: 28668577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lessons to learn about postmortem metabolism using the AMPKγ3(R200Q) mutation in the pig.
    Scheffler TL; Park S; Gerrard DE
    Meat Sci; 2011 Nov; 89(3):244-50. PubMed ID: 21632185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylation inhibition alleviates energy metabolism in muscles of minipigs varying with the type of muscle fibers.
    Yan J; Nian Y; Zou B; Wu J; Zhou G; Li C
    Meat Sci; 2022 Feb; 184():108699. PubMed ID: 34700176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of oral administration of sodium citrate or acetate to pigs on blood parameters, postmortem glycolysis, muscle pH decline, and quality attributes of pork.
    Stephens JW; Dikeman ME; Unruh JA; Haub MD; Tokach MD; Dritz SS
    J Anim Sci; 2008 Jul; 86(7):1669-77. PubMed ID: 18344311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive cation binding computations of proton balance for reactions of the phosphagen and glycolytic energy systems within skeletal muscle.
    Robergs RA
    PLoS One; 2017; 12(12):e0189822. PubMed ID: 29267370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excess glycogen does not resolve high ultimate pH of oxidative muscle.
    England EM; Matarneh SK; Oliver EM; Apaoblaza A; Scheffler TL; Shi H; Gerrard DE
    Meat Sci; 2016 Apr; 114():95-102. PubMed ID: 26766296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria influence glycolytic and tricarboxylic acid cycle metabolism under postmortem simulating conditions.
    Matarneh SK; Yen CN; Bodmer J; El-Kadi SW; Gerrard DE
    Meat Sci; 2021 Feb; 172():108316. PubMed ID: 32971310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomics analysis as an approach to understand the formation of pale, soft, and exudative (PSE) pork.
    Zequan X; Yonggang S; Guangjuan L; Shijun X; Li Z; Mingrui Z; Yanli X; Zirong W
    Meat Sci; 2021 Jul; 177():108353. PubMed ID: 33721680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the unknowns involved in the transformation of muscle to meat.
    England EM; Scheffler TL; Kasten SC; Matarneh SK; Gerrard DE
    Meat Sci; 2013 Dec; 95(4):837-43. PubMed ID: 23673227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postmortem breakdown of ATP and glycogen in ground muscle: A review.
    Hamm R
    Meat Sci; 1977 Jan; 1(1):15-39. PubMed ID: 22054426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in glycolytic and mitochondrial protein profiles regulates postmortem muscle acidification and oxygen consumption in dark-cutting beef.
    Kiyimba F; Hartson SD; Rogers J; VanOverbeke DL; Mafi GG; Ramanathan R
    J Proteomics; 2021 Feb; 232():104016. PubMed ID: 33059087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.