These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34284362)

  • 1. Tuning-fork-based piezoresponse force microscopy.
    Labardi M; Capaccioli S
    Nanotechnology; 2021 Aug; 32(44):. PubMed ID: 34284362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of electrostatic interactions due to surface potential in piezoresponse force microscopy.
    Seol D; Kang S; Sun C; Kim Y
    Ultramicroscopy; 2019 Dec; 207():112839. PubMed ID: 31494481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Piezoelectric displacement mapping of compliant surfaces by constant-excitation frequency-modulation piezoresponse force microscopy.
    Labardi M; Magnani A; Capaccioli S
    Nanotechnology; 2020 Feb; 31(7):075707. PubMed ID: 31665710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy.
    Balke N; Jesse S; Yu P; Ben Carmichael ; Kalinin SV; Tselev A
    Nanotechnology; 2016 Oct; 27(42):425707. PubMed ID: 27631885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking the Fundamental Limitations of Nanoscale Ferroelectric Characterization: Non-Contact Heterodyne Electrostrain Force Microscopy.
    Zeng Q; Huang Q; Wang H; Li C; Fan Z; Chen D; Cheng Y; Zeng K
    Small Methods; 2021 Nov; 5(11):e2100639. PubMed ID: 34927968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale Ferroelectric Characterization with Heterodyne Megasonic Piezoresponse Force Microscopy.
    Zeng Q; Wang H; Xiong Z; Huang Q; Lu W; Sun K; Fan Z; Zeng K
    Adv Sci (Weinh); 2021 Apr; 8(8):2003993. PubMed ID: 33898182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band Excitation Piezoresponse Force Microscopy Adapted for Weak Ferroelectrics: On-the-Fly Tuning of the Central Band Frequency.
    Spiridonov M; Chouprik A; Mikheev V; Markeev AM; Negrov D
    Microsc Microanal; 2021 Apr; 27(2):326-336. PubMed ID: 33750509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of the Electromechanical Measurements by Piezoresponse Force Microscopy.
    Buragohain P; Lu H; Richter C; Schenk T; Kariuki P; Glinsek S; Funakubo H; Íñiguez J; Defay E; Schroeder U; Gruverman A
    Adv Mater; 2022 Nov; 34(47):e2206237. PubMed ID: 36210741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Piezoresponse in Ferroelectric Materials under Uniform Electric Field of Electrodes.
    Udalov A; Alikin D; Kholkin A
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piezoelectric Yield of Single Electrospun Poly(acrylonitrile) Ultrafine Fibers Studied by Piezoresponse Force Microscopy and Numerical Simulations.
    Montorsi M; Zavagna L; Scarpelli L; Azimi B; Capaccioli S; Danti S; Labardi M
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution angle-resolved lateral piezoresponse force microscopy: Visualization of in-plane piezoresponse vectors.
    Chu K; Yang CH
    Rev Sci Instrum; 2018 Dec; 89(12):123704. PubMed ID: 30599567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding Apparent Ferroelectricity in Perovskite Nanofibers.
    Ganeshkumar R; Somnath S; Cheah CW; Jesse S; Kalinin SV; Zhao R
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42131-42138. PubMed ID: 29130311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Piezoelectric Heterogeneity in Collagen Type I Fibrils Quantitatively Characterized by Piezoresponse Force Microscopy.
    Kwon J; Cho H
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6680-6689. PubMed ID: 33320620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatically-blind quantitative piezoresponse force microscopy free of distributed-force artifacts.
    Killgore JP; Robins L; Collins L
    Nanoscale Adv; 2022 Apr; 4(8):2036-2045. PubMed ID: 36133417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations of ferroelectric polycrystalline bulks and thick films using piezoresponse force microscopy.
    Uršič H; Prah U
    Proc Math Phys Eng Sci; 2019 Mar; 475(2223):20180782. PubMed ID: 31007554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superior Transverse Piezoelectricity in a Halide Perovskite Molecular Ferroelectric Thin Film.
    Wang ZX; Zhang H; Wang F; Cheng H; He WH; Liu YH; Huang XQ; Li PF
    J Am Chem Soc; 2020 Jul; 142(29):12857-12864. PubMed ID: 32602714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in the Nanoscale Evaluation of Piezoelectric and Ferroelectric Properties via Scanning Probe Microscopy.
    Kwon O; Seol D; Qiao H; Kim Y
    Adv Sci (Weinh); 2020 Sep; 7(17):1901391. PubMed ID: 32995111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultimate Decoupling between Surface Topography and Material Functionality in Atomic Force Microscopy Using an Inner-Paddled Cantilever.
    Dharmasena SM; Yang Z; Kim S; Bergman LA; Vakakis AF; Cho H
    ACS Nano; 2018 Jun; 12(6):5559-5569. PubMed ID: 29800518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials.
    Abdollahi A; Domingo N; Arias I; Catalan G
    Nat Commun; 2019 Mar; 10(1):1266. PubMed ID: 30894544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic Contribution to the Photo-Assisted Piezoresponse Force Microscopy by Photo-Induced Surface Charge.
    Loo CC; Ng SS; Chang WS
    Microsc Microanal; 2022 May; ():1-5. PubMed ID: 35616223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.