These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 34284656)
1. Suppression of hyphal formation and virulence of Khan F; Bamunuarachchi NI; Tabassum N; Jo DM; Khan MM; Kim YM Biofouling; 2021 Jul; 37(6):626-655. PubMed ID: 34284656 [No Abstract] [Full Text] [Related]
2. The GRF10 homeobox gene regulates filamentous growth in the human fungal pathogen Candida albicans. Ghosh AK; Wangsanut T; Fonzi WA; Rolfes RJ FEMS Yeast Res; 2015 Dec; 15(8):. PubMed ID: 26472755 [TBL] [Abstract][Full Text] [Related]
3. Hydroquinones Including Tetrachlorohydroquinone Inhibit Candida albicans Biofilm Formation by Repressing Hyphae-Related Genes. Kim YG; Lee JH; Park S; Khadke SK; Shim JJ; Lee J Microbiol Spectr; 2022 Oct; 10(5):e0253622. PubMed ID: 36190417 [TBL] [Abstract][Full Text] [Related]
4. A C. albicans TRAPP Complex-Associated Gene Contributes to Cell Wall Integrity, Hyphal and Biofilm Formation, and Tissue Invasion. Ma D; Yu M; Eszterhas S; Rollenhagen C; Lee SA Microbiol Spectr; 2023 Jun; 11(3):e0536122. PubMed ID: 37222596 [TBL] [Abstract][Full Text] [Related]
5. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. Sun L; Liao K; Wang D PLoS One; 2015; 10(2):e0117695. PubMed ID: 25710475 [TBL] [Abstract][Full Text] [Related]
6. Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans. Ruben S; Garbe E; Mogavero S; Albrecht-Eckardt D; Hellwig D; Häder A; Krüger T; Gerth K; Jacobsen ID; Elshafee O; Brunke S; Hünniger K; Kniemeyer O; Brakhage AA; Morschhäuser J; Hube B; Vylkova S; Kurzai O; Martin R mBio; 2020 Apr; 11(2):. PubMed ID: 32345638 [TBL] [Abstract][Full Text] [Related]
7. Alizarin and Chrysazin Inhibit Biofilm and Hyphal Formation by Manoharan RK; Lee JH; Kim YG; Lee J Front Cell Infect Microbiol; 2017; 7():447. PubMed ID: 29085811 [No Abstract] [Full Text] [Related]
8. Synergistic Interaction of Piperine and Thymol on Attenuation of the Biofilm Formation, Hyphal Morphogenesis and Phenotypic Switching in Priya A; Nivetha S; Pandian SK Front Cell Infect Microbiol; 2021; 11():780545. PubMed ID: 35127553 [TBL] [Abstract][Full Text] [Related]
9. Stenotrophomonas maltophilia interferes via the DSF-mediated quorum sensing system with Candida albicans filamentation and its planktonic and biofilm modes of growth. de Rossi BP; García C; Alcaraz E; Franco M Rev Argent Microbiol; 2014; 46(4):288-97. PubMed ID: 25576410 [TBL] [Abstract][Full Text] [Related]
10. Proteus vulgaris and Proteus mirabilis Decrease Candida albicans Biofilm Formation by Suppressing Morphological Transition to Its Hyphal Form. Lee KH; Park SJ; Choi SJ; Park JY Yonsei Med J; 2017 Nov; 58(6):1135-1143. PubMed ID: 29047237 [TBL] [Abstract][Full Text] [Related]
11. Natural product solasodine-3-O-β-D-glucopyranoside inhibits the virulence factors of Candida albicans. Li Y; Chang W; Zhang M; Ying Z; Lou H FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26162798 [TBL] [Abstract][Full Text] [Related]
12. Dermaseptin-S1 decreases Candida albicans growth, biofilm formation and the expression of hyphal wall protein 1 and aspartic protease genes. Belmadani A; Semlali A; Rouabhia M J Appl Microbiol; 2018 Jul; 125(1):72-83. PubMed ID: 29476689 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional control of hyphal morphogenesis in Candida albicans. Villa S; Hamideh M; Weinstock A; Qasim MN; Hazbun TR; Sellam A; Hernday AD; Thangamani S FEMS Yeast Res; 2020 Feb; 20(1):. PubMed ID: 31981355 [TBL] [Abstract][Full Text] [Related]
14. Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation. Romo JA; Zhang H; Cai H; Kadosh D; Koehler JR; Saville SP; Wang Y; Lopez-Ribot JL mSphere; 2019 Sep; 4(5):. PubMed ID: 31511371 [TBL] [Abstract][Full Text] [Related]
15. Expression of UME6, a key regulator of Candida albicans hyphal development, enhances biofilm formation via Hgc1- and Sun41-dependent mechanisms. Banerjee M; Uppuluri P; Zhao XR; Carlisle PL; Vipulanandan G; Villar CC; López-Ribot JL; Kadosh D Eukaryot Cell; 2013 Feb; 12(2):224-32. PubMed ID: 23223035 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of Biofilm Formation by Lee JH; Kim YG; Khadke SK; Yamano A; Watanabe A; Lee J ACS Infect Dis; 2019 Jul; 5(7):1177-1187. PubMed ID: 31055910 [No Abstract] [Full Text] [Related]
17. Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Messier C; Epifano F; Genovese S; Grenier D Phytomedicine; 2011 Mar; 18(5):380-3. PubMed ID: 21353508 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant. James KM; MacDonald KW; Chanyi RM; Cadieux PA; Burton JP J Med Microbiol; 2016 Apr; 65(4):328-336. PubMed ID: 26847045 [TBL] [Abstract][Full Text] [Related]
19. A curcumin-sophorolipid nanocomplex inhibits Candida albicans filamentation and biofilm development. Rajasekar V; Darne P; Prabhune A; Kao RYT; Solomon AP; Ramage G; Samaranayake L; Neelakantan P Colloids Surf B Biointerfaces; 2021 Apr; 200():111617. PubMed ID: 33592455 [TBL] [Abstract][Full Text] [Related]
20. Ent2 Governs Morphogenesis and Virulence in Part through Regulation of the Cdc42 Signaling Cascade in the Fungal Pathogen Candida albicans. Lash E; Prudent V; Stogios PJ; Savchenko A; Noble SM; Robbins N; Cowen LE mBio; 2023 Apr; 14(2):e0343422. PubMed ID: 36809010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]