These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3428486)

  • 1. An update on the external ear resonance in infants and young children.
    Kruger B
    Ear Hear; 1987 Dec; 8(6):333-6. PubMed ID: 3428486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The acoustic properties of the infant ear. A preliminary report.
    Kruger B; Ruben RJ
    Acta Otolaryngol; 1987; 103(5-6):578-85. PubMed ID: 3618184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomy and physiology of the external ear: implications for hearing aid fitting in infants.
    Simonetti P
    Pro Fono; 2004; 16(2):209-16. PubMed ID: 15311746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maturation of the occlusion effect: a bone conduction auditory steady state response study in infants and adults with normal hearing.
    Small SA; Hu N
    Ear Hear; 2011; 32(6):708-19. PubMed ID: 21617531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure transfer function and absorption cross section from the diffuse field to the human infant ear canal.
    Keefe DH; Bulen JC; Campbell SL; Burns EM
    J Acoust Soc Am; 1994 Jan; 95(1):355-71. PubMed ID: 8120247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of eardrum acoustic pressure and of ear canal length from remote points in the canal.
    Chan JC; Geisler CD
    J Acoust Soc Am; 1990 Mar; 87(3):1237-47. PubMed ID: 2324390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults.
    Keefe DH; Hunter LL; Feeney MP; Fitzpatrick DF
    J Acoust Soc Am; 2015 Dec; 138(6):3625-53. PubMed ID: 26723319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of the acoustic input impedance of the ear.
    Withnell RH; Gowdy LE
    J Assoc Res Otolaryngol; 2013 Oct; 14(5):611-22. PubMed ID: 23917695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniature microphone probe tube measurements in the external auditory canal.
    Hellstrom PA; Axelsson A
    J Acoust Soc Am; 1993 Feb; 93(2):907-19. PubMed ID: 8445126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the chinchilla pinna and ear canal in electrophysiological measures of hearing thresholds.
    Murphy WJ; Davis RR
    J Acoust Soc Am; 1998 Apr; 103(4):1951-6. PubMed ID: 9566318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Correlation between ear canal resonance and tympanic membrane impedance in relation to age and body mass and postmortem changes].
    Vitzthum HG; Weimann S; Scheinpflug L; Vorwerk U; Begall K
    HNO; 1997 Dec; 45(12):976-82. PubMed ID: 9486378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes in multifrequency tympanograms.
    Holte L; Margolis RH; Cavanaugh RM
    Audiology; 1991; 30(1):1-24. PubMed ID: 2059166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ear canal pressure and age on wideband absorbance in young infants.
    Aithal S; Aithal V; Kei J
    Int J Audiol; 2017 May; 56(5):346-355. PubMed ID: 28599603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of forward and reverse middle-ear transmission applied to otoacoustic emissions in infant and adult ears.
    Keefe DH; Abdala C
    J Acoust Soc Am; 2007 Feb; 121(2):978-93. PubMed ID: 17348521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid-Structure Finite-Element Modelling and Clinical Measurement of the Wideband Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear.
    Motallebzadeh H; Maftoon N; Pitaro J; Funnell WRJ; Daniel SJ
    J Assoc Res Otolaryngol; 2017 Oct; 18(5):671-686. PubMed ID: 28721606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic acoustic considerations of ear canal probe measurements.
    Dirks DD; Kincaid GE
    Ear Hear; 1987 Oct; 8(5 Suppl):60S-67S. PubMed ID: 3678652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transverse pressure distributions in a simple model ear canal occluded by a hearing aid test fixture.
    Stinson MR; Daigle GA
    J Acoust Soc Am; 2007 Jun; 121(6):3689-702. PubMed ID: 17552720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probe-tube microphone measures of ear-canal sound pressure levels in infants and children.
    Feigin JA; Kopun JG; Stelmachowicz PG; Gorga MP
    Ear Hear; 1989 Aug; 10(4):254-8. PubMed ID: 2776986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Ear Canal Orientation on Tympanic Membrane Motion and the Sound Field Near the Tympanic Membrane.
    Cheng JT; Ravicz M; Guignard J; Furlong C; Rosowski JJ
    J Assoc Res Otolaryngol; 2015 Aug; 16(4):413-32. PubMed ID: 25910607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.