These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34285205)

  • 1. A generalizable and accessible approach to machine learning with global satellite imagery.
    Rolf E; Proctor J; Carleton T; Bolliger I; Shankar V; Ishihara M; Recht B; Hsiang S
    Nat Commun; 2021 Jul; 12(1):4392. PubMed ID: 34285205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based object recognition in multispectral satellite imagery for real-time applications.
    Gudžius P; Kurasova O; Darulis V; Filatovas E
    Mach Vis Appl; 2021; 32(4):98. PubMed ID: 34177121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery.
    Zhang P; Ke Y; Zhang Z; Wang M; Li P; Zhang S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Land cover classification from multi-temporal, multi-spectral remotely sensed imagery using patch-based recurrent neural networks.
    Sharma A; Liu X; Yang X
    Neural Netw; 2018 Sep; 105():346-355. PubMed ID: 29933156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the performance of fusion based planet-scope and Sentinel-2 data for crop classification using inception inspired deep convolutional neural network.
    Minallah N; Tariq M; Aziz N; Khan W; Rehman AU; Belhaouari SB
    PLoS One; 2020; 15(9):e0239746. PubMed ID: 32986785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images.
    Zhou T; Geng Y; Ji C; Xu X; Wang H; Pan J; Bumberger J; Haase D; Lausch A
    Sci Total Environ; 2021 Feb; 755(Pt 2):142661. PubMed ID: 33059134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of explainable AI in the satellite data, deep machine learning, and human poverty domain.
    Hall O; Ohlsson M; Rögnvaldsson T
    Patterns (N Y); 2022 Oct; 3(10):100600. PubMed ID: 36277818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A human-machine collaborative approach measures economic development using satellite imagery.
    Ahn D; Yang J; Cha M; Yang H; Kim J; Park S; Han S; Lee E; Lee S; Park S
    Nat Commun; 2023 Oct; 14(1):6811. PubMed ID: 37884499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting road quality using high resolution satellite imagery: A transfer learning approach.
    Brewer E; Lin J; Kemper P; Hennin J; Runfola D
    PLoS One; 2021; 16(7):e0253370. PubMed ID: 34242250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of Radiometric Ground-Based Data and High-Resolution QuickBird Imagery with Multivariate Modeling to Estimate Maize Traits in the Nile Delta of Egypt.
    Elmetwalli AH; Tyler AN; Moghanm FS; Alamri SAM; Eid EM; Elsayed S
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34204099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-Resolution for "Jilin-1" Satellite Video Imagery via a Convolutional Network.
    Xiao A; Wang Z; Wang L; Ren Y
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29652838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternative approach for estimating above ground biomass using Resourcesat-2 satellite data and artificial neural network in Bundelkhand region of India.
    Deb D; Singh JP; Deb S; Datta D; Ghosh A; Chaurasia RS
    Environ Monit Assess; 2017 Oct; 189(11):576. PubMed ID: 29052047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring tropical forest succession at landscape scales despite uncertainty in Landsat time series.
    Caughlin TT; Barber C; Asner GP; Glenn NF; Bohlman SA; Wilson CH
    Ecol Appl; 2021 Jan; 31(1):e02208. PubMed ID: 32627902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whale counting in satellite and aerial images with deep learning.
    Guirado E; Tabik S; Rivas ML; Alcaraz-Segura D; Herrera F
    Sci Rep; 2019 Oct; 9(1):14259. PubMed ID: 31582780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerial-trained deep learning networks for surveying cetaceans from satellite imagery.
    Borowicz A; Le H; Humphries G; Nehls G; Höschle C; Kosarev V; Lynch HJ
    PLoS One; 2019; 14(10):e0212532. PubMed ID: 31574136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting Arsenic Contamination Using Satellite Imagery and Machine Learning.
    Agrawal A; Petersen MR
    Toxics; 2021 Dec; 9(12):. PubMed ID: 34941767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining satellite imagery and machine learning to predict poverty.
    Jean N; Burke M; Xie M; Davis WM; Lobell DB; Ermon S
    Science; 2016 Aug; 353(6301):790-4. PubMed ID: 27540167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Habitat heterogeneity captured by 30-m resolution satellite image texture predicts bird richness across the United States.
    Farwell LS; Elsen PR; Razenkova E; Pidgeon AM; Radeloff VC
    Ecol Appl; 2020 Dec; 30(8):e02157. PubMed ID: 32358975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.