These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34285215)

  • 1. A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries.
    Lin Z; Shi HY; Lin L; Yang X; Wu W; Sun X
    Nat Commun; 2021 Jul; 12(1):4424. PubMed ID: 34285215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A High-capacity Benzoquinone Derivative Anode for All-organic Long-cycle Aqueous Proton Batteries.
    Wu S; Taylor M; Guo H; Wang S; Han C; Vongsvivut J; Meyer Q; Sun Q; Ho J; Zhao C
    Angew Chem Int Ed Engl; 2024 Dec; 63(52):e202412455. PubMed ID: 39390734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Conjugated Coordination Polymer with Benzoquinone as Electrode Material for All Organic Symmetric Lithium-ion Batteries.
    Liang C; Cai X; Lin J; Chen Y; Xie Y; Liu Y
    Chempluschem; 2024 May; 89(5):e202300620. PubMed ID: 38052722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of Organic Cathode Material Based on Quinone and Pyrazine Motifs for Rechargeable Lithium and Zinc Batteries.
    Menart S; Lužanin O; Pirnat K; Pahovnik D; Moškon J; Dominko R
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16029-16039. PubMed ID: 38511931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Long-Cycle-Life Self-Doped Polyaniline Cathode for Rechargeable Aqueous Zinc Batteries.
    Shi HY; Ye YJ; Liu K; Song Y; Sun X
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16359-16363. PubMed ID: 30307094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities.
    Zhang N; Cheng F; Liu J; Wang L; Long X; Liu X; Li F; Chen J
    Nat Commun; 2017 Sep; 8(1):405. PubMed ID: 28864823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ dynamic catalysis electrode electrolyte interphase enabling Mg
    Zhang Y; He X; Li H; Zhao W; Wang K; Jiang K
    J Colloid Interface Sci; 2024 Nov; 674():603-611. PubMed ID: 38945027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Anti-Aromatic Covalent Organic Framework Cathode with Dual-Redox Centers for Rechargeable Aqueous Zinc Batteries.
    Lin Z; Lin L; Zhu J; Wu W; Yang X; Sun X
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38689-38695. PubMed ID: 35975747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecularly engineered organic copolymers as high capacity cathode materials for aqueous proton battery operating at sub-zero temperatures.
    Lakshmi KCS; Vedhanarayanan B; Cheng HY; Ji X; Shen HH; Lin TW
    J Colloid Interface Sci; 2022 Aug; 619():123-131. PubMed ID: 35378474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton Insertion Promoted a Polyfurfural/MnO
    Zhao Q; Huang X; Zhou M; Ju Z; Sun X; Sun Y; Huang Z; Li H; Ma T
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36072-36081. PubMed ID: 32700891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing Quinone-Based Anodes with Rapid Kinetics for Rechargeable Proton Batteries.
    Yang X; Ni Y; Lu Y; Zhang Q; Hou J; Yang G; Liu X; Xie W; Yan Z; Zhao Q; Chen J
    Angew Chem Int Ed Engl; 2022 Sep; 61(39):e202209642. PubMed ID: 35909226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Electrochemical Performance of the Orthorhombic V
    Tan X; Guo G; Wang K; Zhang H
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultralong-Life Cathode for Aqueous Zinc-Organic Batteries via Pouring 9,10-Phenanthraquinone into Active Carbon.
    Yang B; Ma Y; Bin D; Lu H; Xia Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58818-58826. PubMed ID: 34846135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton Self-Doped Polyaniline with High Electrochemical Activity for Aqueous Zinc-Ion Batteries.
    Yin C; Pan C; Pan Y; Hu J; Fang G
    Small Methods; 2023 Nov; 7(11):e2300574. PubMed ID: 37572004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation.
    Lu Y; Ni Y; Chen J
    Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A High Capacity p-Type Organic Cathode Material for Aqueous Zinc Batteries.
    Zhang Y; Li M; Li Z; Lu Y; Li H; Liang J; Hu X; Zhang L; Ding K; Xu Q; Liu H; Wang Y
    Angew Chem Int Ed Engl; 2024 Nov; 63(48):e202410342. PubMed ID: 39223696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fused Functional Organic Material with the Alternating Conjugation of Quinone-Pyrazine as Cathode for Aqueous Zinc Ion Batteries.
    Wang Y; Niu S; Gong S; Ju N; Jiang T; Wang Y; Zhang X; Sun Q; Sun HB
    Small Methods; 2024 Jul; 8(7):e2301301. PubMed ID: 38185796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A High-Energy and Long-Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn
    Hou Z; Dong M; Xiong Y; Zhang X; Ao H; Liu M; Zhu Y; Qian Y
    Small; 2020 Jul; 16(26):e2001228. PubMed ID: 32510836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-capacity aqueous zinc batteries using sustainable quinone electrodes.
    Zhao Q; Huang W; Luo Z; Liu L; Lu Y; Li Y; Li L; Hu J; Ma H; Chen J
    Sci Adv; 2018 Mar; 4(3):eaao1761. PubMed ID: 29511734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.