These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 34285250)
1. Quantification of pedogenic particles masked by geogenic magnetic fraction. Szuszkiewicz M; Grison H; Petrovský E; Szuszkiewicz MM; Gołuchowska B; Łukasik A Sci Rep; 2021 Jul; 11(1):14800. PubMed ID: 34285250 [TBL] [Abstract][Full Text] [Related]
2. Response of pedogenic magnetite to changing vegetation in soils developed under uniform climate, topography, and parent material. Maxbauer DP; Feinberg JM; Fox DL; Nater EA Sci Rep; 2017 Dec; 7(1):17575. PubMed ID: 29242554 [TBL] [Abstract][Full Text] [Related]
3. Application of magnetic methods for assessment of soil restoration in the vicinity of metallurgical copper-processing plant in Bulgaria. Jordanova N; Petrovský E; Kapicka A; Jordanova D; Petrov P Environ Monit Assess; 2017 Apr; 189(4):158. PubMed ID: 28285437 [TBL] [Abstract][Full Text] [Related]
4. Unmixing hysteresis loops of the late Miocene-early Pleistocene loess-red clay sequence. Zhang R; Necula C; Heslop D; Nie J Sci Rep; 2016 Jul; 6():29515. PubMed ID: 27389499 [TBL] [Abstract][Full Text] [Related]
5. Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain). Revuelta MA; McIntosh G; Pey J; Pérez N; Querol X; Alastuey A Environ Pollut; 2014 May; 188():109-17. PubMed ID: 24583390 [TBL] [Abstract][Full Text] [Related]
6. Detecting atmospheric pollution in surface soils using magnetic measurements: a reappraisal using an England and Wales database. Blundell A; Hannam JA; Dearing JA; Boyle JF Environ Pollut; 2009 Oct; 157(10):2878-90. PubMed ID: 19586697 [TBL] [Abstract][Full Text] [Related]
7. Soil tillage erosion estimated by using magnetism of soils--a case study from Bulgaria. Jordanova D; Jordanova N; Atanasova A; Tsacheva T; Petrov P Environ Monit Assess; 2011 Dec; 183(1-4):381-94. PubMed ID: 21369942 [TBL] [Abstract][Full Text] [Related]
8. [Magnetic Properties of Farmland Soils in Arid Regions in Northwest China and Their Environmental Implications]. Wang X; Xia DS; Wang B; Chen H; Liu H Huan Jing Ke Xue; 2017 Aug; 38(8):3507-3518. PubMed ID: 29964963 [TBL] [Abstract][Full Text] [Related]
9. Scanning electron microscopy and magnetic characterization of iron oxides in solid waste landfill leachate. Huliselan EK; Bijaksana S; Srigutomo W; Kardena E J Hazard Mater; 2010 Jul; 179(1-3):701-8. PubMed ID: 20395044 [TBL] [Abstract][Full Text] [Related]
10. Magnetic signatures of a creosote oil contaminated site: case study in São Paulo, Brazil. de Moraes CS; Ustra AT; Barbosa AM; Imbernon RAL; Tengan CMU Sci Rep; 2022 Dec; 12(1):21853. PubMed ID: 36528719 [TBL] [Abstract][Full Text] [Related]
11. Impact of an iron mine and a nickel smelter at the Norwegian/Russian border close to the Barents Sea on surface soil magnetic susceptibility and content of potentially toxic elements. Magiera T; Zawadzki J; Szuszkiewicz M; Fabijańczyk P; Steinnes E; Fabian K; Miszczak E Chemosphere; 2018 Mar; 195():48-62. PubMed ID: 29253789 [TBL] [Abstract][Full Text] [Related]
12. Combination of geo- pedo- and technogenic magnetic and geochemical signals in soil profiles - Diversification and its interpretation: A new approach. Szuszkiewicz M; Łukasik A; Magiera T; Mendakiewicz M Environ Pollut; 2016 Jul; 214():464-477. PubMed ID: 27112729 [TBL] [Abstract][Full Text] [Related]
13. Tracking the occurrence of anthropogenic magnetic particles and potentially toxic elements (PTEs) in house dust using magnetic and geochemical analyses. Kelepertzis E; Argyraki A; Botsou F; Aidona E; Szabó Á; Szabó C Environ Pollut; 2019 Feb; 245():909-920. PubMed ID: 30682748 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of lead geochemistry and the mobility of Pb isotopes in the system of pedogenic rock-pedosphere-irrigated riverwater-cereal-atmosphere from the Yangtze River delta region, China. Wang C; Wang J; Yang Z; Mao C; Ji J Chemosphere; 2013 Nov; 93(9):1927-35. PubMed ID: 23916212 [TBL] [Abstract][Full Text] [Related]
15. Investigation of nanoparticle transport inside coarse-grained geological media using magnetic resonance imaging. Ramanan B; Holmes WM; Sloan WT; Phoenix VR Environ Sci Technol; 2012 Jan; 46(1):360-6. PubMed ID: 22091923 [TBL] [Abstract][Full Text] [Related]
16. Mineralogical and Geochemical Nature of Calcareous Vineyard Soils from Alcubillas (La Mancha, Central Spain). Jiménez-Ballesta R; Bravo S; Amorós JA; Pérez-de Los Reyes C; García-Giménez R; Higueras P; García-Navarro FJ Int J Environ Res Public Health; 2020 Aug; 17(17):. PubMed ID: 32867215 [TBL] [Abstract][Full Text] [Related]
17. Grain size--dependent alteration and the magnetization of oceanic basalts. Kent DV; Gee J Science; 1994 Sep; 265(5178):1561-3. PubMed ID: 17801533 [TBL] [Abstract][Full Text] [Related]
18. Relation between magnetic parameters and nematode abundance in agricultural soils of Portugal--a multidisciplinary study in the scope of environmental magnetism. Lourenço A; Esteves I; Rocha A; Abrantes I; Gomes C Environ Monit Assess; 2015 Apr; 187(4):162. PubMed ID: 25740688 [TBL] [Abstract][Full Text] [Related]
19. Geogenic pollution, fractionation and potential risks of Cd and Zn in soils from a mountainous region underlain by black shale. Liu Y; Xiao T; Zhu Z; Ma L; Li H; Ning Z Sci Total Environ; 2021 Mar; 760():143426. PubMed ID: 33190888 [TBL] [Abstract][Full Text] [Related]
20. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks. Bourg IC; Ajo-Franklin JB Acc Chem Res; 2017 Sep; 50(9):2067-2074. PubMed ID: 28862427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]