These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34285303)

  • 1. Kinetic characterisation and inhibitor sensitivity of Candida albicans and Candida auris recombinant AOX expressed in a self-assembled proteoliposome system.
    Copsey AC; Barsottini MRO; May B; Xu F; Albury MS; Young L; Moore AL
    Sci Rep; 2021 Jul; 11(1):14748. PubMed ID: 34285303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and structural characterisation of the ubiquinol-binding site and oxygen reduction by the trypanosomal alternative oxidase.
    Young L; Rosell-Hidalgo A; Inaoka DK; Xu F; Albury M; May B; Kita K; Moore AL
    Biochim Biophys Acta Bioenerg; 2020 Oct; 1861(10):148247. PubMed ID: 32565080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the ubiquinol-binding site of recombinant Sauromatum guttatum alternative oxidase expressed in E. coli membranes through site-directed mutagenesis.
    Young L; May B; Pendlebury-Watt A; Shearman J; Elliott C; Albury MS; Shiba T; Inaoka DK; Harada S; Kita K; Moore AL
    Biochim Biophys Acta; 2014 Jul; 1837(7):1219-25. PubMed ID: 24530866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical characterization and inhibition of the alternative oxidase enzyme from the fungal phytopathogen Moniliophthora perniciosa.
    Barsottini MRO; Copsey A; Young L; Baroni RM; Cordeiro AT; Pereira GAG; Moore AL
    Commun Biol; 2020 May; 3(1):263. PubMed ID: 32451394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterisation of recombinant DNA encoding the alternative oxidase from Sauromatum guttatum.
    Elliott C; Young L; May B; Shearman J; Albury MS; Kido Y; Kita K; Moore AL
    Mitochondrion; 2014 Nov; 19 Pt B():261-8. PubMed ID: 24632469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and testing of novel alternative oxidase (AOX) inhibitors with antifungal activity against Moniliophthora perniciosa (Stahel), the causal agent of witches' broom disease of cocoa, and other phytopathogens.
    Barsottini MR; Pires BA; Vieira ML; Pereira JG; Costa PC; Sanitá J; Coradini A; Mello F; Marschalk C; Silva EM; Paschoal D; Figueira A; Rodrigues FH; Cordeiro AT; Miranda PC; Oliveira PS; Sforça ML; Carazzolle MF; Rocco SA; Pereira GA
    Pest Manag Sci; 2019 May; 75(5):1295-1303. PubMed ID: 30350447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of fluconazole-resistant sterol 14-demethylase P450 (CYP51) in Candida albicans is a model demonstrating the diversification mechanism of P450.
    Aoyama Y; Kudo M; Asai K; Okonogi K; Horiuchi T; Gotoh O; Yoshida Y
    Arch Biochem Biophys; 2000 Jul; 379(1):170-1. PubMed ID: 10864455
    [No Abstract]   [Full Text] [Related]  

  • 8. The alternative oxidase of Candida albicans causes reduced fluconazole susceptibility.
    Yan L; Li M; Cao Y; Gao P; Cao Y; Wang Y; Jiang Y
    J Antimicrob Chemother; 2009 Oct; 64(4):764-73. PubMed ID: 19656781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and functional expression of alternative oxidase from Candida albicans.
    Huh WK; Kang SO
    J Bacteriol; 1999 Jul; 181(13):4098-102. PubMed ID: 10383980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of lanosterol-14 alpha-demethylase (CYP51) of human and Candida albicans for inhibition by different antifungal azoles.
    Trösken ER; Adamska M; Arand M; Zarn JA; Patten C; Völkel W; Lutz WK
    Toxicology; 2006 Nov; 228(1):24-32. PubMed ID: 16989930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and crystallization of the plant alternative oxidase.
    May B; Elliott C; Iwata M; Young L; Shearman J; Albury MS; Moore AL
    Methods Mol Biol; 2015; 1305():281-99. PubMed ID: 25910742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternative respiratory pathway on Candida krusei: implications on susceptibility profile and oxidative stress.
    Costa-de-Oliveira S; Sampaio-Marques B; Barbosa M; Ricardo E; Pina-Vaz C; Ludovico P; Rodrigues AG
    FEMS Yeast Res; 2012 Jun; 12(4):423-9. PubMed ID: 22268592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into the alternative oxidases: are all oxidases made equal?
    May B; Young L; Moore AL
    Biochem Soc Trans; 2017 Jun; 45(3):731-740. PubMed ID: 28620034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of Upc2p-Inducible
    Luna-Tapia A; Willems HME; Parker JE; Tournu H; Barker KS; Nishimoto AT; Rogers PD; Kelly SL; Peters BM; Palmer GE
    mBio; 2018 May; 9(3):. PubMed ID: 29789366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharomyces cerevisiae mitoproteome plasticity in response to recombinant alternative ubiquinol oxidase.
    Mathy G; Navet R; Gerkens P; Leprince P; De Pauw E; Sluse-Goffart CM; Sluse FE; Douette P
    J Proteome Res; 2006 Feb; 5(2):339-48. PubMed ID: 16457600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative Oxidase Promotes Biofilm Formation of Candida albicans.
    Wang TM; Xie XH; Li K; Deng YH; Chen H
    Curr Med Sci; 2018 Jun; 38(3):443-448. PubMed ID: 30074210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The discovery of potential phosphopantetheinyl transferase Ppt2 inhibitors against drug-resistant Candida albicans.
    Meng LN; Liu JY; Wang YT; Ni SS; Xiang MJ
    Braz J Microbiol; 2020 Dec; 51(4):1665-1672. PubMed ID: 32557281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations and/or Overexpressions of ERG4 and ERG11 Genes in Clinical Azoles-Resistant Isolates of Candida albicans.
    Feng W; Yang J; Xi Z; Qiao Z; Lv Y; Wang Y; Ma Y; Wang Y; Cen W
    Microb Drug Resist; 2017 Jul; 23(5):563-570. PubMed ID: 27976986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of the heterologously expressed human lanosterol 14alpha-demethylase (other names: P45014DM, CYP51, P45051) and inhibition of the purified human and Candida albicans CYP51 with azole antifungal agents.
    Lamb DC; Kelly DE; Waterman MR; Stromstedt M; Rozman D; Kelly SL
    Yeast; 1999 Jun; 15(9):755-63. PubMed ID: 10398344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates.
    Holmes AR; Lin YH; Niimi K; Lamping E; Keniya M; Niimi M; Tanabe K; Monk BC; Cannon RD
    Antimicrob Agents Chemother; 2008 Nov; 52(11):3851-62. PubMed ID: 18710914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.