These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34286149)

  • 1. Coaxial Electrohydrodynamic Bioprinting of Pre-vascularized Cell-laden Constructs for Tissue Engineering.
    Mao M; Liang H; He J; Kasimu A; Zhang Y; Wang L; Li X; Li D
    Int J Bioprint; 2021; 7(3):362. PubMed ID: 34286149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coaxial nozzle-assisted electrohydrodynamic printing for microscale 3D cell-laden constructs.
    Liang H; He J; Chang J; Zhang B; Li D
    Int J Bioprint; 2018; 4(1):127. PubMed ID: 33102910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-core coaxial bioprinting of double-channel constructs with a potential for perfusion and interaction of cells.
    Yu Y; Xie R; He Y; Zhao F; Zhang Q; Wang W; Zhang Y; Hu J; Luo D; Peng W
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35616388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery.
    Gao Q; He Y; Fu JZ; Liu A; Ma L
    Biomaterials; 2015 Aug; 61():203-15. PubMed ID: 26004235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs.
    Shao L; Gao Q; Xie C; Fu J; Xiang M; He Y
    Biofabrication; 2020 May; 12(3):035014. PubMed ID: 32155602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coaxial bioprinting of cell-laden vascular constructs using a gelatin-tyramine bioink.
    Hong S; Kim JS; Jung B; Won C; Hwang C
    Biomater Sci; 2019 Nov; 7(11):4578-4587. PubMed ID: 31433402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic 3D Printing of a Photo-Cross-Linkable Bioink Using Insights from Computational Modeling.
    Mirani B; Stefanek E; Godau B; Hossein Dabiri SM; Akbari M
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3269-3280. PubMed ID: 34142796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directly coaxial bioprinting of 3D vascularized tissue using novel bioink based on decellularized human amniotic membrane.
    Heidari F; Saadatmand M; Simorgh S
    Int J Biol Macromol; 2023 Dec; 253(Pt 4):127041. PubMed ID: 37742904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprinting for vascular and vascularized tissue biofabrication.
    Datta P; Ayan B; Ozbolat IT
    Acta Biomater; 2017 Mar; 51():1-20. PubMed ID: 28087487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering.
    Yeo M; Lee JS; Chun W; Kim GH
    Biomacromolecules; 2016 Apr; 17(4):1365-75. PubMed ID: 26998966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Electro-Conductive Composite Bioinks for Electrohydrodynamic Bioprinting with Microscale Resolution.
    Kasimu A; Zhu H; Meng Z; Qiu Z; Wang Y; Li D; He J
    Adv Biol (Weinh); 2023 Oct; 7(10):e2300056. PubMed ID: 37062755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D bioprinting of complex channels within cell-laden hydrogels.
    Ji S; Almeida E; Guvendiren M
    Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of self-assembled core-sheath microfibers via formulation of alginate-based bioinks.
    Chae S; Lee H; Kim G
    Carbohydr Polym; 2023 Apr; 305():120557. PubMed ID: 36737203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation.
    Yeo M; Kim G
    Carbohydr Polym; 2021 Nov; 272():118444. PubMed ID: 34420709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-shear bioprinting of highly oriented porous hydrogel microfibers to construct anisotropic tissues.
    Shao L; Hou R; Zhu Y; Yao Y
    Biomater Sci; 2021 Oct; 9(20):6763-6771. PubMed ID: 34286720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronous 3D Bioprinting of Large-Scale Cell-Laden Constructs with Nutrient Networks.
    Shao L; Gao Q; Xie C; Fu J; Xiang M; He Y
    Adv Healthc Mater; 2020 Aug; 9(15):e1901142. PubMed ID: 31846229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution electrohydrodynamic bioprinting: a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs.
    He J; Zhang B; Li Z; Mao M; Li J; Han K; Li D
    Biofabrication; 2020 Jul; 12(4):042002. PubMed ID: 32615543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D bioprinting optimization of human mesenchymal stromal cell laden gelatin-alginate-collagen bioink.
    Sawyer SW; Takeda K; Alayoubi A; Mirdamadi E; Zidan A; Bauer SR; Degheidy H
    Biomed Mater; 2022 Dec; 18(1):. PubMed ID: 36395510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering.
    Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME
    Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicomponent bioprinting of heterogeneous hydrogel constructs based on microfluidic printheads.
    Feng F; He J; Li J; Mao M; Li D
    Int J Bioprint; 2019; 5(2):202. PubMed ID: 32596537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.