BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34286295)

  • 1. Bioluminescent optogenetic (BL-OG) activation of neurons during mouse postnatal brain development.
    Crespo EL; Prakash M; Bjorefeldt A; Medendorp WE; Shaner NC; Lipscombe D; Moore CI; Hochgeschwender U
    STAR Protoc; 2021 Sep; 2(3):100667. PubMed ID: 34286295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The BioLuminescent-OptoGenetic in vivo response to coelenterazine is proportional, sensitive, and specific in neocortex.
    Gomez-Ramirez M; More AI; Friedman NG; Hochgeschwender U; Moore CI
    J Neurosci Res; 2020 Mar; 98(3):471-480. PubMed ID: 31544973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioluminescent Optogenetics 2.0: Harnessing Bioluminescence to Activate Photosensory Proteins In Vitro and In Vivo.
    Crespo EL; Bjorefeldt A; Prakash M; Hochgeschwender U
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34424228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined Optogenetic and Chemogenetic Control of Neurons.
    Berglund K; Tung JK; Higashikubo B; Gross RE; Moore CI; Hochgeschwender U
    Methods Mol Biol; 2016; 1408():207-25. PubMed ID: 26965125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining parameters of specificity for bioluminescent optogenetic activation of neurons using in vitro multi electrode arrays (MEA).
    Prakash M; Medendorp WE; Hochgeschwender U
    J Neurosci Res; 2020 Mar; 98(3):437-447. PubMed ID: 30152529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Locomotor Recovery in a Rat Model of Spinal Cord Injury by BioLuminescent-OptoGenetic (BL-OG) Stimulation with an Enhanced Luminopsin.
    Ikefuama EC; Kendziorski GE; Anderson K; Shafau L; Prakash M; Hochgeschwender U; Petersen ED
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous electrophysiology and optogenetic perturbation of the same neurons in chronically implanted animals using μLED silicon probes.
    Kinsky NR; Vöröslakos M; Lopez Ruiz JR; Watkins de Jong L; Slager N; McKenzie S; Yoon E; Diba K
    STAR Protoc; 2023 Dec; 4(4):102570. PubMed ID: 37729059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioluminescence-Optogenetics: A Practical Guide.
    Stern MA; Skelton H; Fernandez AM; Gutekunst CN; Berglund K; Gross RE
    Methods Mol Biol; 2022; 2525():333-346. PubMed ID: 35836081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for detecting plastic changes in defined neuronal populations in neuropathic mice.
    Zhang Z; Zamponi GW
    STAR Protoc; 2021 Sep; 2(3):100698. PubMed ID: 34382022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BioLuminescent OptoGenetics in the choroid plexus: integrated opto- and chemogenetic control
    Klein E; Marsh S; Becker J; Andermann M; Lehtinen M; Moore CI
    Neurophotonics; 2024 Apr; 11(2):024210. PubMed ID: 38948888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patch clamp recording from bipolar cells in the wholemount mouse retina.
    Bohl JM; Shehu A; Hellmer CB; Ichinose T
    STAR Protoc; 2022 Sep; 3(3):101482. PubMed ID: 35769922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BL-OG: BioLuminescent-OptoGenetics.
    Moore CI; Berglund K
    J Neurosci Res; 2020 Mar; 98(3):469-470. PubMed ID: 31840283
    [No Abstract]   [Full Text] [Related]  

  • 13. Applications of Bioluminescence-Optogenetics in Rodent Models.
    Stern MA; Skelton H; Fernandez AM; Gutekunst CN; Gross RE; Berglund K
    Methods Mol Biol; 2022; 2525():347-363. PubMed ID: 35836082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training protocol for probabilistic Pavlovian conditioning in mice using an open-source head-fixed setup.
    Hegedüs P; Velencei A; Belval CH; Heckenast J; Hangya B
    STAR Protoc; 2021 Sep; 2(3):100795. PubMed ID: 34522902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic and chemogenetic manipulation of seizure threshold in mice.
    Kravchenko JA; Goldberg EM; Mattis J
    STAR Protoc; 2023 Mar; 4(1):102019. PubMed ID: 36640370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocol to study projection-specific circuits in the basal ganglia of adult mice using viral vector tracing, optogenetics, and patch-clamp technique.
    Ji YW; Xu XY; Yin C; Zhou C; Xiao C
    STAR Protoc; 2023 Sep; 4(3):102551. PubMed ID: 37660296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HOPE: Hybrid-Drive Combining Optogenetics, Pharmacology and Electrophysiology.
    Delcasso S; Denagamage S; Britton Z; Graybiel AM
    Front Neural Circuits; 2018; 12():41. PubMed ID: 29872379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studying Neuronal Function Ex Vivo Using Optogenetic Stimulation and Patch Clamp.
    Aksoy-Aksel A; Genty J; Zeller M; Ehrlich I
    Methods Mol Biol; 2020; 2173():1-20. PubMed ID: 32651907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patch-clamp and multi-electrode array electrophysiological analysis in acute mouse brain slices.
    Manz KM; Siemann JK; McMahon DG; Grueter BA
    STAR Protoc; 2021 Jun; 2(2):100442. PubMed ID: 33899023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.