BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 34286581)

  • 1. Lipid Nanoparticle Spherical Nucleic Acids for Intracellular DNA and RNA Delivery.
    Sinegra AJ; Evangelopoulos M; Park J; Huang Z; Mirkin CA
    Nano Lett; 2021 Aug; 21(15):6584-6591. PubMed ID: 34286581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver.
    Zhang R; El-Mayta R; Murdoch TJ; Warzecha CC; Billingsley MM; Shepherd SJ; Gong N; Wang L; Wilson JM; Lee D; Mitchell MJ
    Biomater Sci; 2021 Feb; 9(4):1449-1463. PubMed ID: 33404020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bile acid-containing lipid nanoparticles enhance extrahepatic mRNA delivery.
    Patel SK; Billingsley MM; Mukalel AJ; Thatte AS; Hamilton AG; Gong N; El-Mayta R; Safford HC; Merolle M; Mitchell MJ
    Theranostics; 2024; 14(1):1-16. PubMed ID: 38164140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemistry of Lipid Nanoparticles for RNA Delivery.
    Eygeris Y; Gupta M; Kim J; Sahay G
    Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways.
    Tam A; Kulkarni J; An K; Li L; Dorscheid DR; Singhera GK; Bernatchez P; Reid G; Chan K; Witzigmann D; Cullis PR; Sin DD; Lim CJ
    Eur J Pharm Sci; 2022 Sep; 176():106234. PubMed ID: 35688311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-Dependent Biodistribution of Liposomal Spherical Nucleic Acids.
    Ferrer JR; Sinegra AJ; Ivancic D; Yeap XY; Qiu L; Wang JJ; Zhang ZJ; Wertheim JA; Mirkin CA
    ACS Nano; 2020 Feb; 14(2):1682-1693. PubMed ID: 31951368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System.
    Pattipeiluhu R; Arias-Alpizar G; Basha G; Chan KYT; Bussmann J; Sharp TH; Moradi MA; Sommerdijk N; Harris EN; Cullis PR; Kros A; Witzigmann D; Campbell F
    Adv Mater; 2022 Apr; 34(16):e2201095. PubMed ID: 35218106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of siRNA-Loaded Lipid Nanoparticles using a Microfluidic Device.
    Maeki M; Okada Y; Uno S; Niwa A; Ishida A; Tani H; Tokeshi M
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35404350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of lipid composition on RNA-Lipid nanoparticle properties and their sensitivity to thin-film freezing and drying.
    AboulFotouh K; Southard B; Dao HM; Xu H; Moon C; Williams Iii RO; Cui Z
    Int J Pharm; 2024 Jan; 650():123688. PubMed ID: 38070660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodistribution and Non-linear Gene Expression of mRNA LNPs Affected by Delivery Route and Particle Size.
    Di J; Du Z; Wu K; Jin S; Wang X; Li T; Xu Y
    Pharm Res; 2022 Jan; 39(1):105-114. PubMed ID: 35080707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodistribution of small interfering RNA at the organ and cellular levels after lipid nanoparticle-mediated delivery.
    Shi B; Keough E; Matter A; Leander K; Young S; Carlini E; Sachs AB; Tao W; Abrams M; Howell B; Sepp-Lorenzino L
    J Histochem Cytochem; 2011 Aug; 59(8):727-40. PubMed ID: 21804077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vivo Behavior of Ultrasmall Spherical Nucleic Acids.
    Callmann CE; Vasher MK; Das A; Kusmierz CD; Mirkin CA
    Small; 2023 Jun; 19(24):e2300097. PubMed ID: 36905236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA.
    Chen S; Tam YYC; Lin PJC; Sung MMH; Tam YK; Cullis PR
    J Control Release; 2016 Aug; 235():236-244. PubMed ID: 27238441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles.
    Sebastiani F; Yanez Arteta M; Lerche M; Porcar L; Lang C; Bragg RA; Elmore CS; Krishnamurthy VR; Russell RA; Darwish T; Pichler H; Waldie S; Moulin M; Haertlein M; Forsyth VT; Lindfors L; Cárdenas M
    ACS Nano; 2021 Apr; 15(4):6709-6722. PubMed ID: 33754708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of Ostwald ripening in low molecular weight amino lipid nanoparticles for systemic delivery of siRNA therapeutics.
    Gindy ME; Feuston B; Glass A; Arrington L; Haas RM; Schariter J; Stirdivant SM
    Mol Pharm; 2014 Nov; 11(11):4143-53. PubMed ID: 25317715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-reversible lipid derivative: A novel type of pH-responsive lipid for nanoparticle-mediated siRNA delivery.
    Hirai Y; Saeki R; Song F; Koide H; Fukata N; Tomita K; Maeda N; Oku N; Asai T
    Int J Pharm; 2020 Jul; 585():119479. PubMed ID: 32473372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA.
    Ball RL; Hajj KA; Vizelman J; Bajaj P; Whitehead KA
    Nano Lett; 2018 Jun; 18(6):3814-3822. PubMed ID: 29694050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of poly(γ-glutamic acid) in lipid nanoparticles for enhanced mRNA delivery efficiency in vitro and in vivo.
    Zhang H; Gao X; Sun Q; Dong X; Zhu Z; Yang C
    Acta Biomater; 2024 Mar; 177():361-376. PubMed ID: 38342193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Delivery of Globotriaosylceramide Synthase siRNA using Polyhistidine-Incorporated Lipid Nanoparticles.
    Kim IG; Jung WH; You G; Lee H; Shin YJ; Lim SW; Chung BH; Mok H
    Macromol Biosci; 2023 Apr; 23(4):e2200423. PubMed ID: 36728673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the interior pH of lipid nanoparticles using a pH-sensitive fluorescent dye-based DNA probe.
    Zhao B; Kamanzi A; Zhang Y; Chan KYT; Robertson M; Leslie S; Cullis PR
    Biosens Bioelectron; 2024 May; 251():116065. PubMed ID: 38330772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.