These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34286582)

  • 21. Surface-engineered quantum dots for the labeling of hydrophobic microdomains in bacterial biofilms.
    Aldeek F; Mustin C; Balan L; Roques-Carmes T; Fontaine-Aupart MP; Schneider R
    Biomaterials; 2011 Aug; 32(23):5459-70. PubMed ID: 21549423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ideal CdSe/CdS Core/Shell Nanocrystals Enabled by Entropic Ligands and Their Core Size-, Shell Thickness-, and Ligand-Dependent Photoluminescence Properties.
    Zhou J; Zhu M; Meng R; Qin H; Peng X
    J Am Chem Soc; 2017 Nov; 139(46):16556-16567. PubMed ID: 29094943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation.
    Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J
    Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots.
    Zhang W; Chen G; Wang J; Ye BC; Zhong X
    Inorg Chem; 2009 Oct; 48(20):9723-31. PubMed ID: 19772326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of primary amine capped CdSe, ZnSe, and ZnS quantum dots by FT-IR: determination of surface bonding interaction and identification of selective desorption.
    Cooper JK; Franco AM; Gul S; Corrado C; Zhang JZ
    Langmuir; 2011 Jul; 27(13):8486-93. PubMed ID: 21631120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CdSe/ZnS core/shell quantum dot sensitization of low index TiO(2) single crystal surfaces.
    Sambur JB; Parkinson BA
    J Am Chem Soc; 2010 Feb; 132(7):2130-1. PubMed ID: 20121191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of hole transporting materials on photoluminescence of CdSe core/shell quantum dots].
    Qu YQ; Zhang QB; Jing PT; Sun YJ; Zeng QH; Zhang YL; Kong XG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3204-7. PubMed ID: 20210132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoluminescent enhancement of CdSe/Cd(1-x) Zn(x)S quantum dots by hexadecylamine at room temperature.
    Yang J; Yang P
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7322-8. PubMed ID: 23035471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced thermal stability of InP quantum dots coated with Al-doped ZnS shell.
    Koh S; Lee H; Lee T; Park K; Kim WJ; Lee DC
    J Chem Phys; 2019 Oct; 151(14):144704. PubMed ID: 31615236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simple Synthesis of CuInS
    Li H; Jiang X; Wang A; Chu X; Du Z
    Front Chem; 2020; 8():669. PubMed ID: 33195004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots.
    Lee DU; Kim DH; Choi DH; Kim SW; Lee HS; Yoo KH; Kim TW
    Opt Express; 2016 Jan; 24(2):A350-7. PubMed ID: 26832587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crafting Core/Graded Shell-Shell Quantum Dots with Suppressed Re-absorption and Tunable Stokes Shift as High Optical Gain Materials.
    Jung J; Lin CH; Yoon YJ; Malak ST; Zhai Y; Thomas EL; Vardeny V; Tsukruk VV; Lin Z
    Angew Chem Int Ed Engl; 2016 Apr; 55(16):5071-5. PubMed ID: 26990250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emission transformation in CdSe/ZnS quantum dots conjugated to biomolecules.
    Torchynska TV; Polupan G; Vega Macotela LG
    J Photochem Photobiol B; 2017 May; 170():309-313. PubMed ID: 28477576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming Cd
    Xia M; Liu C; Zhao Z; Wang J; Lin C; Xu Y; Heo J; Dai S; Han J; Zhao X
    Sci Rep; 2017 Feb; 7():42359. PubMed ID: 28169376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of near-infrared-emitting CdTe/CdSe/ZnSe/ZnS heterostructure.
    Yang P
    J Nanosci Nanotechnol; 2014 Apr; 14(4):3147-54. PubMed ID: 24734747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Luminance enhancement of color stabilized organic light-emitting devices with an active layer containing CdSe/CdS/ZnS core/shell/shell quantum dots.
    Kim KH; Park SJ; Jeon YP; Kim TW
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8352-5. PubMed ID: 25958527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A tri-n-octylphosphine-assisted successive ionic layer adsorption and reaction method to synthesize multilayered core-shell CdSe-ZnS quantum dots with extremely high quantum yield.
    Hao JJ; Zhou J; Zhang CY
    Chem Commun (Camb); 2013 Jul; 49(56):6346-8. PubMed ID: 23748410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlling the structures of organic semiconductor-quantum dot nanocomposites through ligand shell chemistry.
    Toolan DTW; Weir MP; Kilbride RC; Willmott JR; King SM; Xiao J; Greenham NC; Friend RH; Rao A; Jones RAL; Ryan AJ
    Soft Matter; 2020 Sep; 16(34):7970-7981. PubMed ID: 32766663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation mechanism of highly luminescent silica capsules incorporating multiple hydrophobic quantum dots with various emission wavelengths.
    Li C; Murase N
    J Colloid Interface Sci; 2013 Dec; 411():82-91. PubMed ID: 24112844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum Dot-Polyfluorene Composites for White-Light-Emitting Quantum Dot-Based LEDs.
    Zvaigzne M; Domanina I; Il'gach D; Yakimansky A; Nabiev I; Samokhvalov P
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33322281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.