These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34286715)

  • 1. Synthesis of natural products containing highly strained trans-fused bicyclo[3.3.0]octane: historical overview and future prospects.
    Zhang W; Li L; Li CC
    Chem Soc Rev; 2021 Sep; 50(17):9430-9442. PubMed ID: 34286715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetracyclic Diterpenoid Synthesis Facilitated by ODI-Cascade Approaches to Bicyclo[3.2.1]octane Skeletons.
    Gao K; Hu J; Ding H
    Acc Chem Res; 2021 Feb; 54(4):875-889. PubMed ID: 33508196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of bridgehead hydroxy bicyclo[2.2.2]octane derivatives.
    Thornqvist V; Manner S; Wingstrand M; Frejd T
    J Org Chem; 2005 Oct; 70(21):8609-12. PubMed ID: 16209621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of highly functionalised enantiopure bicyclo[3.2.1]- octane systems from carvone.
    Abad A; Agulló C; Cuñat AC; de Alfonso I; Navarro I; Vera N
    Molecules; 2004 Apr; 9(5):287-99. PubMed ID: 18007432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of chiral building blocks having a bicyclo[3.3.0]octane framework using a diastereomeric resolution-selective deprotection.
    Tamura M; Oyamada M; Shirataki Y
    Chirality; 2015 Jun; 27(6):364-9. PubMed ID: 25908334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for the Construction of Benzobicyclo[3.2.1]octane in Natural Product Synthesis.
    Liu JX; Li H; Zhang SP; Lu SC; Gong YL; Xu S
    Chemistry; 2024 May; 30(25):e202303989. PubMed ID: 38345999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bridged-Selective Intramolecular Diels-Alder Reactions in the Synthesis of Bicyclo[2.2.2]octanes.
    Hanashima M; Matsumura T; Asaji Y; Yoshimura T; Matsuo JI
    Chem Pharm Bull (Tokyo); 2020; 68(12):1201-1209. PubMed ID: 33268652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total Synthesis of Natural Products with Bridged Bicyclo[m.n.1] Ring Systems via Type II [5 + 2] Cycloaddition.
    Min L; Liu X; Li CC
    Acc Chem Res; 2020 Mar; 53(3):703-718. PubMed ID: 32069021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Annulative Methods in the Synthesis of Complex Meroterpene Natural Products.
    Shen X; Thach DQ; Ting CP; Maimone TJ
    Acc Chem Res; 2021 Feb; 54(3):583-594. PubMed ID: 33448794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ring-strain-enabled reaction discovery: new heterocycles from bicyclo[1.1.0]butanes.
    Walczak MA; Krainz T; Wipf P
    Acc Chem Res; 2015 Apr; 48(4):1149-58. PubMed ID: 25775119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New approach to the preparation of bicyclo octane derivatives via the enantioselective cascade reaction catalyzed by chiral diamine-Ni(OAc)2 complex.
    Li W; Liu X; Mao Z; Chen Q; Wang R
    Org Biomol Chem; 2012 Jun; 10(24):4767-73. PubMed ID: 22588686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile synthesis of a polyhydroxylated 2-azabicyclo[3.2.1]octane.
    Reed DD; Bergmeier SC
    J Org Chem; 2007 Feb; 72(3):1024-6. PubMed ID: 17253828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A practical chemo-enzymatic synthesis of homochiral bicyclo[2.2.2]octane-2,5-dione.
    Luo Y; Carnell AJ
    J Org Chem; 2010 Mar; 75(6):2057-60. PubMed ID: 20151711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Base catalyzed synthesis of bicyclo[3.2.1]octane scaffolds.
    Boehringer R; Geoffroy P; Miesch M
    Org Biomol Chem; 2015 Jul; 13(25):6940-3. PubMed ID: 26053672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold-catalyzed enantioselective ring-expanding cycloisomerization of cyclopropylidene bearing 1,5-enynes.
    Zheng H; Felix RJ; Gagné MR
    Org Lett; 2014 Apr; 16(8):2272-5. PubMed ID: 24684491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemoenzymatic and enantiodivergent routes to 1,2-ring-fused bicyclo[2.2.2]octane and related tricyclic frameworks.
    Austin KA; Elsworth JD; Banwell MG; Willis AC
    Org Biomol Chem; 2010 Feb; 8(4):751-4. PubMed ID: 20135028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total Synthesis and Assignment of the Absolute Configuration of (+)-Omphalic Acid.
    Chen R; Qiu D; Lei X; Niu Y; Hua Y; Peng H; Zeng T; Zhang Y
    Org Lett; 2021 Sep; 23(17):6972-6976. PubMed ID: 34397211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An unusual Michael-induced skeletal rearrangement of a bicyclo[3.3.1]nonane framework of phloroglucinols to a novel bioactive bicyclo[3.3.0]octane.
    Vidali VP; Mitsopoulou KP; Dakanali M; Demadis KD; Odysseos AD; Christou YA; Couladouros EA
    Org Lett; 2013 Nov; 15(21):5404-7. PubMed ID: 24117171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Pursuit of Synthetic Efficiency: Convergent Approaches.
    Gao Y; Ma D
    Acc Chem Res; 2021 Feb; 54(3):569-582. PubMed ID: 33448789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic approaches to the bicyclo[2.2.2]diazaoctane ring system common to the paraherquamides, stephacidins and related prenylated indole alkaloids.
    Miller KA; Williams RM
    Chem Soc Rev; 2009 Nov; 38(11):3160-74. PubMed ID: 19847349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.