BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 34286800)

  • 1. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
    Shakeri A; Khan S; Didar TF
    Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices.
    Akther F; Yakob SB; Nguyen NT; Ta HT
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33228050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond Polydimethylsiloxane: Alternative Materials for Fabrication of Organ-on-a-Chip Devices and Microphysiological Systems.
    Campbell SB; Wu Q; Yazbeck J; Liu C; Okhovatian S; Radisic M
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2880-2899. PubMed ID: 34275293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The revolution of PDMS microfluidics in cellular biology.
    Banik S; Uchil A; Kalsang T; Chakrabarty S; Ali MA; Srisungsitthisunti P; Mahato KK; Surdo S; Mazumder N
    Crit Rev Biotechnol; 2023 May; 43(3):465-483. PubMed ID: 35410564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.
    Fiorini GS; Jeffries GD; Lim DS; Kuyper CL; Chiu DT
    Lab Chip; 2003 Aug; 3(3):158-63. PubMed ID: 15100767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymeric Microfluidic Devices Fabricated Using Epoxy Resin for Chemically Demanding and Day-Long Experiments.
    Lee J; Kim M
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290975
    [No Abstract]   [Full Text] [Related]  

  • 8. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production.
    Tsao CW
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PDMS-based porous membrane for medical applications: design, development, and fabrication.
    Keshtiban MM; Zand MM; Ebadi A; Azizi Z
    Biomed Mater; 2023 May; 18(4):. PubMed ID: 36808922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of PDMS-modified glass from cast-and-peel fabrication.
    Liu K; Tian Y; Pitchimani R; Huang M; Lincoln H; Pappas D
    Talanta; 2009 Jul; 79(2):333-8. PubMed ID: 19559887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane integration into PDMS-free microfluidic platforms for organ-on-chip and analytical chemistry applications.
    Schneider S; Gruner D; Richter A; Loskill P
    Lab Chip; 2021 May; 21(10):1866-1885. PubMed ID: 33949565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels.
    Fatona A; Chen Y; Reid M; Brook MA; Moran-Mirabal JM
    Lab Chip; 2015 Nov; 15(22):4322-30. PubMed ID: 26400365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple Surface Modification of Poly(dimethylsiloxane) via Surface Segregating Smart Polymers for Biomicrofluidics.
    Gökaltun A; Kang YBA; Yarmush ML; Usta OB; Asatekin A
    Sci Rep; 2019 May; 9(1):7377. PubMed ID: 31089162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PDMS and its suitability for analytical microfluidic devices.
    Kuncová-Kallio J; Kallio PJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2486-9. PubMed ID: 17946118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices.
    Khnouf R; Karasneh D; Albiss BA
    Electrophoresis; 2016 Feb; 37(3):529-35. PubMed ID: 26534833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells.
    Peterson SL; McDonald A; Gourley PL; Sasaki DY
    J Biomed Mater Res A; 2005 Jan; 72(1):10-8. PubMed ID: 15534867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring the surface properties of poly(dimethylsiloxane) microfluidic devices.
    Hu S; Ren X; Bachman M; Sims CE; Li GP; Allbritton NL
    Langmuir; 2004 Jun; 20(13):5569-74. PubMed ID: 15986702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting.
    Hu S; Ren X; Bachman M; Sims CE; Li GP; Allbritton N
    Anal Chem; 2002 Aug; 74(16):4117-23. PubMed ID: 12199582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalization of Polydimethylsiloxane with Diazirine-Based Linkers for Covalent Protein Immobilization.
    Li J; Bi L; Musolino SF; Wulff JE; Sask KN
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1-16. PubMed ID: 38149968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.