These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 34286951)
1. Simultaneous Enhanced Efficiency and Stability of Perovskite Solar Cells Using Adhesive Fluorinated Polymer Interfacial Material. Lyu M; Park S; Lee H; Ma BS; Park SH; Hong KH; Kim H; Kim TS; Noh JH; Son HJ; Park NG ACS Appl Mater Interfaces; 2021 Aug; 13(30):35595-35605. PubMed ID: 34286951 [TBL] [Abstract][Full Text] [Related]
3. Interfacial Dipole poly(2-ethyl-2-oxazoline) Modification Triggers Simultaneous Band Alignment and Passivation for Air-Stable Perovskite Solar Cells. Xi H; Song Z; Guo Y; Zhu W; Ding L; Zhu W; Chen D; Zhang C Polymers (Basel); 2022 Jul; 14(13):. PubMed ID: 35808795 [TBL] [Abstract][Full Text] [Related]
4. Dual-Functional Enantiomeric Compounds as Hole-Transporting Materials and Interfacial Layers in Perovskite Solar Cells. Chiu YL; Li CW; Kang YH; Lin CW; Lu CW; Chen CP; Chang YJ ACS Appl Mater Interfaces; 2022 Jun; 14(22):26135-26147. PubMed ID: 35634977 [TBL] [Abstract][Full Text] [Related]
5. Interfacial Engineering of Perovskite Solar Cells by Employing a Hydrophobic Copper Phthalocyanine Derivative as Hole-Transporting Material with Improved Performance and Stability. Jiang X; Yu Z; Lai J; Zhang Y; Hu M; Lei N; Wang D; Yang X; Sun L ChemSusChem; 2017 Apr; 10(8):1838-1845. PubMed ID: 28198594 [TBL] [Abstract][Full Text] [Related]
6. Spherical Hole-Transporting Interfacial Layer Passivated Defect for Inverted NiO Chang YM; Li CW; Lu YL; Wu MS; Li H; Lin YS; Lu CW; Chen CP; Chang YJ ACS Appl Mater Interfaces; 2021 Feb; 13(5):6450-6460. PubMed ID: 33527837 [TBL] [Abstract][Full Text] [Related]
7. Development of Dopant-Free Donor-Acceptor-type Hole Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. Heo JH; Park S; Im SH; Son HJ ACS Appl Mater Interfaces; 2017 Nov; 9(45):39511-39518. PubMed ID: 29064230 [TBL] [Abstract][Full Text] [Related]
8. Small Molecule-Polymer Composite Hole-Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells. Wang JM; Wang ZK; Li M; Hu KH; Yang YG; Hu Y; Gao XY; Liao LS ACS Appl Mater Interfaces; 2017 Apr; 9(15):13240-13246. PubMed ID: 28332402 [TBL] [Abstract][Full Text] [Related]
9. Metallophthalocyanine-Based Molecular Dipole Layer as a Universal and Versatile Approach to Realize Efficient and Stable Perovskite Solar Cells. Li F; Yuan J; Ling X; Huang L; Rujisamphan N; Li Y; Chi L; Ma W ACS Appl Mater Interfaces; 2018 Dec; 10(49):42397-42405. PubMed ID: 30422618 [TBL] [Abstract][Full Text] [Related]
10. Intensive Exposure of Functional Rings of a Polymeric Hole-Transporting Material Enables Efficient Perovskite Solar Cells. Zhang L; Liu C; Zhang J; Li X; Cheng C; Tian Y; Jen AK; Xu B Adv Mater; 2018 Sep; 30(39):e1804028. PubMed ID: 30133039 [TBL] [Abstract][Full Text] [Related]
11. What Should be Considered While Designing Hole-Transporting Material for Perovskite Solar Cells? A Special Attention to Thiophene-Based Hole-Transporting Materials. Purushothaman P; Karpagam S Top Curr Chem (Cham); 2024 Jun; 382(2):21. PubMed ID: 38829461 [TBL] [Abstract][Full Text] [Related]
12. Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH3NH3PbBr0.9I2.1 Quantum Dots. Cha M; Da P; Wang J; Wang W; Chen Z; Xiu F; Zheng G; Wang ZS J Am Chem Soc; 2016 Jul; 138(27):8581-7. PubMed ID: 27345104 [TBL] [Abstract][Full Text] [Related]
13. Lead-Free Perovskite Homojunction-Based HTM-Free Perovskite Solar Cells: Theoretical and Experimental Viewpoints. Sajid S; Alzahmi S; Salem IB; Park J; Obaidat IM Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985875 [TBL] [Abstract][Full Text] [Related]
14. 3 D NiO Nanowall Hole-Transporting Layer for the Passivation of Interfacial Contact in Inverted Perovskite Solar Cells. Yin X; Zhai J; Du P; Li N; Song L; Xiong J; Ko F ChemSusChem; 2020 Mar; 13(5):1006-1012. PubMed ID: 31898849 [TBL] [Abstract][Full Text] [Related]
15. Influence of Fluorinated Components on Perovskite Solar Cells Performance and Stability. Ouedraogo NAN; Yan H; Han CB; Zhang Y Small; 2021 Feb; 17(8):e2004081. PubMed ID: 33522104 [TBL] [Abstract][Full Text] [Related]
16. A Ladder-like Dopant-free Hole-Transporting Polymer for Hysteresis-less High-Efficiency Perovskite Solar Cells with High Ambient Stability. Chawanpunyawat T; Funchien P; Wongkaew P; Henjongchom N; Ariyarit A; Ittisanronnachai S; Namuangruk S; Cheacharoen R; Sudyoadsuk T; Goubard F; Promarak V ChemSusChem; 2020 Sep; 13(18):5058-5066. PubMed ID: 32677195 [TBL] [Abstract][Full Text] [Related]
17. Improved hole-transporting property via HAT-CN for perovskite solar cells without lithium salts. Ma Y; Chung YH; Zheng L; Zhang D; Yu X; Xiao L; Chen Z; Wang S; Qu B; Gong Q; Zou D ACS Appl Mater Interfaces; 2015 Apr; 7(12):6406-11. PubMed ID: 25761404 [TBL] [Abstract][Full Text] [Related]
18. Strategy to Boost the Efficiency of Mixed-Ion Perovskite Solar Cells: Changing Geometry of the Hole Transporting Material. Zhang J; Xu B; Johansson MB; Vlachopoulos N; Boschloo G; Sun L; Johansson EM; Hagfeldt A ACS Nano; 2016 Jul; 10(7):6816-25. PubMed ID: 27304078 [TBL] [Abstract][Full Text] [Related]
19. Underlying Interface Defect Passivation and Charge Transfer Enhancement via Sulfonated Hole-Transporting Materials for Efficient Inverted Perovskite Solar Cells. Li M; Chang J; Sun R; Wang H; Tian Q; Chen S; Wang J; He Q; Zhao G; Xu W; Li Z; Zhang S; Wang F; Qin T ACS Appl Mater Interfaces; 2022 Nov; 14(47):53331-53339. PubMed ID: 36395380 [TBL] [Abstract][Full Text] [Related]
20. Interfacial Passivation Engineering for Highly Efficient Perovskite Solar Cells with a Fill Factor over 83. Ji X; Feng K; Ma S; Wang J; Liao Q; Wang Z; Li B; Huang J; Sun H; Wang K; Guo X ACS Nano; 2022 Aug; 16(8):11902-11911. PubMed ID: 35866886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]