These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 34286960)

  • 41. A novel UV-MALDI-MS analytical approach for determination of halogenated phenyl-containing pesticides.
    Ivanova B; Spiteller M
    Ecotoxicol Environ Saf; 2013 May; 91():86-95. PubMed ID: 23453143
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of a novel hemoglobin adduct in Sprague Dawley rats exposed to atrazine.
    Dooley GP; Prenni JE; Prentiss PL; Cranmer BK; Andersen ME; Tessari JD
    Chem Res Toxicol; 2006 May; 19(5):692-700. PubMed ID: 16696572
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proteomic analysis of atrazine exposure in Drosophila melanogaster (Diptera: Drosophilidae).
    Thornton BJ; Elthon TE; Cerny RL; Siegfried BD
    Chemosphere; 2010 Sep; 81(2):235-41. PubMed ID: 20609461
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tolerance of Oscillatoria limnetica Lemmermann to atrazine in natural phytoplankton populations and in pure culture: influence of season and temperature.
    Bérard A; Leboulanger C; Pelte T
    Arch Environ Contam Toxicol; 1999 Nov; 37(4):472-9. PubMed ID: 10508894
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemically-assisted fragmentation combined with multi-dimensional liquid chromatography and matrix-assisted laser desorption/ionization post source decay, matrix-assisted laser desorption/ionization tandem time-of flight or matrix-assisted laser desorption/ionization tandem mass spectrometry for improved sequencing of tryptic peptides.
    Flensburg J; Tangen A; Prieto M; Hellman U; Wadensten H
    Eur J Mass Spectrom (Chichester); 2005; 11(2):169-79. PubMed ID: 16046801
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Serum protein profiling by miniaturized solid-phase extraction and matrix-assisted laser desorption/ionization mass spectrometry.
    Callesen AK; Mohammed S; Bunkenborg J; Kruse TA; Cold S; Mogensen O; Christensen Rd; Vach W; Jørgensen PE; Jensen ON
    Rapid Commun Mass Spectrom; 2005; 19(12):1578-86. PubMed ID: 15915448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Herbicide mixtures at high doses slow the evolution of resistance in experimentally evolving populations of Chlamydomonas reinhardtii.
    Lagator M; Vogwill T; Mead A; Colegrave N; Neve P
    New Phytol; 2013 May; 198(3):938-945. PubMed ID: 23432427
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Imaging mass spectrometry for lipidomics.
    Goto-Inoue N; Hayasaka T; Zaima N; Setou M
    Biochim Biophys Acta; 2011 Nov; 1811(11):961-9. PubMed ID: 21440085
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of lipids: metal oxide laser ionization mass spectrometry.
    McAlpin CR; Voorhees KJ; Corpuz AR; Richards RM
    Anal Chem; 2012 Sep; 84(18):7677-83. PubMed ID: 22873784
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lipidomic characterization of exosomes isolated from human plasma using various mass spectrometry techniques.
    Peterka O; Jirásko R; Chocholoušková M; Kuchař L; Wolrab D; Hájek R; Vrána D; Strouhal O; Melichar B; Holčapek M
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 May; 1865(5):158634. PubMed ID: 31978556
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Graphene/TiO2 nanocomposite based solid-phase extraction and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for lipidomic profiling of avocado (Persea americana Mill.).
    Shen Q; Yang M; Li L; Cheung HY
    Anal Chim Acta; 2014 Dec; 852():153-61. PubMed ID: 25441892
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Urinalysis of atrazine exposure in farm pesticide applicators.
    Perry MJ; Christiani DC; Mathew J; Degenhardt D; Tortorelli J; Strauss J; Sonzogni WC
    Toxicol Ind Health; 2000 Sep; 16(7-8):285-90. PubMed ID: 11693946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lipidomic Analysis of Chlamydomonas reinhardtii under Nitrogen and Sulfur Deprivation.
    Yang D; Song D; Kind T; Ma Y; Hoefkens J; Fiehn O
    PLoS One; 2015; 10(9):e0137948. PubMed ID: 26375463
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantification of atrazine, phenylurea, and sulfonylurea herbicide metabolites in urine by high-performance liquid chromatography-tandem mass spectrometry.
    Nguyen JV; Olsson AO; Bravo R; Needham LL; Barr DB
    J Anal Toxicol; 2007 May; 31(4):181-6. PubMed ID: 17555640
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MALDI-MS imaging of lipids in ex vivo human skin.
    Hart PJ; Francese S; Claude E; Woodroofe MN; Clench MR
    Anal Bioanal Chem; 2011 Jul; 401(1):115-25. PubMed ID: 21604167
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aquatic risk assessment of herbicides in freshwater ecosystems of South Florida.
    Schuler LJ; Rand GM
    Arch Environ Contam Toxicol; 2008 May; 54(4):571-83. PubMed ID: 18094912
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temperature-dependent sensitivity of growth and photosynthesis of Scenedesmus obliquus, Navicula pelliculosa and two strains of Microcystis aeruginosa to the herbicide atrazine.
    Chalifour A; Juneau P
    Aquat Toxicol; 2011 May; 103(1-2):9-17. PubMed ID: 21392491
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatially Resolved Investigation of Herbicide-Safener Interaction in Maize (
    Kubicki M; Giannakopoulos G; Lamshöft M; Dittgen J
    J Agric Food Chem; 2022 Jun; 70(21):6368-6376. PubMed ID: 35583469
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lipidomic analysis of lactic acid bacteria strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Walczak-Skierska J; Złoch M; Pauter K; Pomastowski P; Buszewski B
    J Dairy Sci; 2020 Dec; 103(12):11062-11078. PubMed ID: 33041037
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ecotoxicological and biochemical mixture effects of an herbicide and a metal at the marine primary producer diatom Thalassiosira weissflogii and the primary consumer copepod Acartia tonsa.
    Filimonova V; Nys C; De Schamphelaere KAC; Gonçalves F; Marques JC; Gonçalves AMM; De Troch M
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):22180-22195. PubMed ID: 29804247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.