BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34286974)

  • 1. Structural Features of Cork Dioxane Lignin from
    Branco DG; Santiago C; Lourenço A; Cabrita L; Evtuguin DV
    J Agric Food Chem; 2021 Aug; 69(30):8555-8564. PubMed ID: 34286974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin Composition and Structure Differs between Xylem, Phloem and Phellem in
    Lourenço A; Rencoret J; Chemetova C; Gominho J; Gutiérrez A; Del Río JC; Pereira H
    Front Plant Sci; 2016; 7():1612. PubMed ID: 27833631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of lignin from leaf sheaths of "dwarf cavendish" banana plant.
    Oliveira L; Evtuguin DV; Cordeiro N; Silvestre AJ; Silva AM; Torres IC
    J Agric Food Chem; 2006 Apr; 54(7):2598-605. PubMed ID: 16569050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of lignin from grape stalks (Vitis vinifera L.).
    Prozil SO; Evtuguin DV; Silva AM; Lopes LP
    J Agric Food Chem; 2014 Jun; 62(24):5420-8. PubMed ID: 24892733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood.
    Evtuguin DV; Neto CP; Silva AM; Domingues PM; Amado FM; Robert D; Faix O
    J Agric Food Chem; 2001 Sep; 49(9):4252-61. PubMed ID: 11559119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cork suberin as a new source of chemicals. 1. Isolation and chemical characterization of its composition.
    Cordeiro N; Belgacem MN; Silvestre AJ; Pascoal Neto C; Gandini A
    Int J Biol Macromol; 1998 Apr; 22(2):71-80. PubMed ID: 9585884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and structural characterization of the milled wood lignin, dioxane lignin, and cellulolytic lignin preparations from brewer's spent grain.
    Rencoret J; Prinsen P; Gutiérrez A; Martínez ÁT; Del Río JC
    J Agric Food Chem; 2015 Jan; 63(2):603-13. PubMed ID: 25520237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical characterization of cork, phloem and wood from different
    Costa R; Lourenço A; Oliveira V; Pereira H
    Heliyon; 2019 Dec; 5(12):e02910. PubMed ID: 31872113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Characterization of Lignin in Four Cacti Wood: Implications of Lignification in the Growth Form and Succulence.
    Reyes-Rivera J; Soto-Hernández M; Canché-Escamilla G; Terrazas T
    Front Plant Sci; 2018; 9():1518. PubMed ID: 30386367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic isolation and structural characterisation of polymeric suberin of cork from Quercus suber L.
    Rocha SM; Goodfellow BJ; Delgadillo I; Neto CP; Gil AM
    Int J Biol Macromol; 2001 Jan; 28(2):107-19. PubMed ID: 11164227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability of cork from Portuguese Quercus suber studied by solid-state (13)C-NMR and FTIR spectroscopies.
    Lopes MH; Barros AS; Pascoal Neto C; Rutledge D; Delgadillo I; Gil AM
    Biopolymers; 2001; 62(5):268-77. PubMed ID: 11745122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance between chemical structure and pyrolysis behavior of palm kernel shell lignin.
    Huang Y; Liu H; Yuan H; Zhan H; Zhuang X; Yuan S; Yin X; Wu C
    Sci Total Environ; 2018 Aug; 633():785-795. PubMed ID: 29602117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Insights on Structures Forming the Lignin-Like Fractions of Ancestral Plants.
    Rencoret J; Gutiérrez A; Marques G; Del Río JC; Tobimatsu Y; Lam PY; Pérez-Boada M; Ruiz-Dueñas FJ; Barrasa JM; Martínez AT
    Front Plant Sci; 2021; 12():740923. PubMed ID: 34691117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction and Characterization of Acidolysis Lignin from Turkey Oak (
    Bergamasco S; Zikeli F; Vinciguerra V; Sobolev AP; Scarnati L; Tofani G; Scarascia Mugnozza G; Romagnoli M
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitation of aliphatic suberin in Quercus suber L. cork by FTIR spectroscopy and solid-state (13)C-NMR spectroscopy.
    Lopes MH; Neto CP; Barros AS; Rutledge D; Delgadillo I; Gil AM
    Biopolymers; 2000; 57(6):344-51. PubMed ID: 11054654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization of lignin: a potential source of antioxidants guaiacol and 4-vinylguaiacol.
    Azadfar M; Gao AH; Bule MV; Chen S
    Int J Biol Macromol; 2015 Apr; 75():58-66. PubMed ID: 25603142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural elucidation of inhomogeneous lignins from bamboo.
    Wen JL; Sun SL; Xue BL; Sun RC
    Int J Biol Macromol; 2015; 77():250-9. PubMed ID: 25841375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Miscanthus giganteus lignin isolated by ethanol organosolv process under reflux condition.
    Bauer S; Sorek H; Mitchell VD; Ibáñez AB; Wemmer DE
    J Agric Food Chem; 2012 Aug; 60(33):8203-12. PubMed ID: 22823333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition of suberin extracted upon gradual alkaline methanolysis of Quercus suber L. cork.
    Lopes MH; Gil AM; Silvestre AJ; Neto CP
    J Agric Food Chem; 2000 Feb; 48(2):383-91. PubMed ID: 10691644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereochemistry of C18 monounsaturated cork suberin acids determined by spectroscopic techniques including (1) H-NMR multiplet analysis of olefinic protons.
    Santos S; Graça J
    Phytochem Anal; 2014; 25(3):192-200. PubMed ID: 24307616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.