These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34287441)

  • 1. Enhanced polysaccharide nanofibers
    Ciriminna R; Scurria A; Pagliaro M
    Chem Commun (Camb); 2021 Aug; 57(64):7863-7868. PubMed ID: 34287441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose nanofibers production using a set of recombinant enzymes.
    Rossi BR; Pellegrini VOA; Cortez AA; Chiromito EMS; Carvalho AJF; Pinto LO; Rezende CA; Mastelaro VR; Polikarpov I
    Carbohydr Polym; 2021 Mar; 256():117510. PubMed ID: 33483031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polysaccharide depolymerization from TEMPO-catalysis: Effect of TEMPO concentration.
    Spier VC; Sierakowski MR; Reed WF; de Freitas RA
    Carbohydr Polym; 2017 Aug; 170():140-147. PubMed ID: 28521979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers.
    Kaffashsaie E; Yousefi H; Nishino T; Matsumoto T; Mashkour M; Madhoushi M; Kawaguchi H
    Carbohydr Polym; 2021 Jun; 262():117938. PubMed ID: 33838815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Ishii D; Saito T; Isogai A
    Biomacromolecules; 2011 Mar; 12(3):548-50. PubMed ID: 21261299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of the production of TEMPO-mediated oxidation cellulose nanofibrils by kneading.
    Sanchez-Salvador JL; Xu H; Balea A; Blanco A; Negro C
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129612. PubMed ID: 38272426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media.
    Liu P; Oksman K; Mathew AP
    J Colloid Interface Sci; 2016 Feb; 464():175-82. PubMed ID: 26619127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TEMPO-mediated selective oxidation of substituted polysaccharides--an efficient approach for the determination of the degree of substitution at C-6.
    Ding B; Ye Yq; Cheng J; Wang K; Luo J; Jiang B
    Carbohydr Res; 2008 Dec; 343(18):3112-6. PubMed ID: 18835597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.
    Soni B; Hassan EB; Schilling MW; Mahmoud B
    Carbohydr Polym; 2016 Oct; 151():779-789. PubMed ID: 27474625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of chemically TEMPO-oxidized and mechanically disintegrated sacchachitin nanofibers (SCNF) for enhanced diabetic wound healing.
    Chao FC; Wu MH; Chen LC; Lin HL; Liu DZ; Ho HO; Sheu MT
    Carbohydr Polym; 2020 Feb; 229():115507. PubMed ID: 31826505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant activities of a polyglucuronic acid sodium salt obtained from TEMPO-mediated oxidation of xanthan.
    Delattre C; Pierre G; Gardarin C; Traikia M; Elboutachfaiti R; Isogai A; Michaud P
    Carbohydr Polym; 2015 Feb; 116():34-41. PubMed ID: 25458270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TEMPO-oxidized cellulose nanofibrils dispersed in organic solvents.
    Okita Y; Fujisawa S; Saito T; Isogai A
    Biomacromolecules; 2011 Feb; 12(2):518-22. PubMed ID: 21190342
    [No Abstract]   [Full Text] [Related]  

  • 14. Cellulose Nanofibers Prepared Using the TEMPO/Laccase/O
    Jiang J; Ye W; Liu L; Wang Z; Fan Y; Saito T; Isogai A
    Biomacromolecules; 2017 Jan; 18(1):288-294. PubMed ID: 27995786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignocellulosic nanofibers from triticale straw: The influence of hemicelluloses and lignin in their production and properties.
    Tarrés Q; Ehman NV; Vallejos ME; Area MC; Delgado-Aguilar M; Mutjé P
    Carbohydr Polym; 2017 May; 163():20-27. PubMed ID: 28267498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils.
    Shinoda R; Saito T; Okita Y; Isogai A
    Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation.
    Jaušovec D; Vogrinčič R; Kokol V
    Carbohydr Polym; 2015 Feb; 116():74-85. PubMed ID: 25458275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources.
    Puangsin B; Yang Q; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils.
    Chen S; Yue N; Cui M; Penkova A; Huang R; Qi W; He Z; Su R
    Carbohydr Polym; 2022 Oct; 294():119803. PubMed ID: 35868763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.