BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34287503)

  • 1. Characterising four Sarconesiopsis magellanica (Diptera: Calliphoridae) larval fat body-derived antimicrobial peptides.
    Pérez C; Díaz-Roa A; Bernal Y; Arenas NE; Kalume DE; Côrtes LMC; da Silva Junior PI; Varela Y; Patarroyo MA; Torres O; Bello FJ
    Mem Inst Oswaldo Cruz; 2021; 116():e200587. PubMed ID: 34287503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sarconesin II, a New Antimicrobial Peptide Isolated from
    Díaz-Roa A; Espinoza-Culupú A; Torres-García O; Borges MM; Avino IN; Alves FL; Miranda A; Patarroyo MA; da Silva PI; Bello FJ
    Molecules; 2019 May; 24(11):. PubMed ID: 31159162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sarconesin:
    Díaz-Roa A; Patarroyo MA; Bello FJ; Da Silva PI
    Front Microbiol; 2018; 9():2249. PubMed ID: 30323791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of the antimicrobial activity of larval secretions and excretions from Calliphora vicina and Sarconesiopsis magellanica (Diptera: Calliphoridae).
    Novoa-Palomares F; Salas-Díaz L; Pérez-Téllez C; Pinillos-Medina I; Torres-García O; Bello FJ
    Biomedica; 2022 Mar; 42(1):54-66. PubMed ID: 35471170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sarconesiopsis magellanica (Diptera: Calliphoridae) excretions and secretions have potent antibacterial activity.
    Díaz-Roa A; Gaona MA; Segura NA; Suárez D; Patarroyo MA; Bello FJ
    Acta Trop; 2014 Aug; 136():37-43. PubMed ID: 24754920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating Sarconesiopsis magellanica blowfly-derived larval therapy and comparing it to Lucilia sericata-derived therapy in an animal model.
    Díaz-Roa A; Gaona MA; Segura NA; Ramírez-Hernández A; Cortés-Vecino JA; Patarroyo MA; Bello F
    Acta Trop; 2016 Feb; 154():34-41. PubMed ID: 26546725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of Sarconesiopsis magellanica larvae (Diptera: Calliphoridae) excretions and secretions on fibroblasts.
    Pinilla YT; Patarroyo MA; Velandia ML; Segura NA; Bello FJ
    Acta Trop; 2015 Feb; 142():26-33. PubMed ID: 25445745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolytic activity regarding Sarconesiopsis magellanica (Diptera: Calliphoridae) larval excretions and secretions.
    Pinilla YT; Moreno-Pérez DA; Patarroyo MA; Bello FJ
    Acta Trop; 2013 Dec; 128(3):686-91. PubMed ID: 24076089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the anti-leishmania activity of Lucilia sericata and Sarconesiopsis magellanica blowfly larval excretions/secretions in an in vitro model.
    Laverde-Paz MJ; Echeverry MC; Patarroyo MA; Bello FJ
    Acta Trop; 2018 Jan; 177():44-50. PubMed ID: 28982577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of anti-microbial peptides and proteins from maggots of Calliphoridae and Sarcophagidae fly species (Diptera).
    Yoon KA; Kim WJ; Cho H; Yoon H; Ahn NH; Lee BH; Lee SH
    Comp Biochem Physiol C Toxicol Pharmacol; 2022 Sep; 259():109390. PubMed ID: 35661821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the effect of Sarconesiopsis magellanica (Diptera: Calliphoridae) larvae-derived haemolymph and fat body extracts on chronic wounds in diabetic rabbits.
    Góngora J; Díaz-Roa A; Ramírez-Hernández A; Cortés-Vecino JA; Gaona MA; Patarroyo MA; Bello F
    J Diabetes Res; 2015; 2015():270253. PubMed ID: 25866825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptidomics-based identification of an antimicrobial peptide derived from goat milk fermented by Lactobacillus rhamnosus (C25).
    Iram D; Kindarle UA; Sansi MS; Meena S; Puniya AK; Vij S
    J Food Biochem; 2022 Dec; 46(12):e14450. PubMed ID: 36226982
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Van Moll L; De Smet J; Paas A; Tegtmeier D; Vilcinskas A; Cos P; Van Campenhout L
    Microbiol Spectr; 2022 Feb; 10(1):e0166421. PubMed ID: 34985302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance?
    Zharkova MS; Orlov DS; Golubeva OY; Chakchir OB; Eliseev IE; Grinchuk TM; Shamova OV
    Front Cell Infect Microbiol; 2019; 9():128. PubMed ID: 31114762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Potent Antibacterial Organometallic Peptide Conjugates.
    Albada B; Metzler-Nolte N
    Acc Chem Res; 2017 Oct; 50(10):2510-2518. PubMed ID: 28953347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design of antimicrobial peptides targeting Gram-negative bacteria.
    Huynh L; Velásquez J; Rabara R; Basu S; Nguyen HB; Gupta G
    Comput Biol Chem; 2021 Jun; 92():107475. PubMed ID: 33813188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coevolution of Resistance Against Antimicrobial Peptides.
    Baindara P; Ghosh AK; Mandal SM
    Microb Drug Resist; 2020 Aug; 26(8):880-899. PubMed ID: 32119634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Smp43-Derived Short-Chain α-Helical Peptide Displays a Unique Sequence and Possesses Antimicrobial Activity against Both Gram-Positive and Gram-Negative Bacteria.
    Luo X; Ding L; Ye X; Zhu W; Zhang K; Li F; Jiang H; Zhao Z; Chen Z
    Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34064808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Silico and In Vitro Analyses Reveal Promising Antimicrobial Peptides from Myxobacteria.
    Arakal BS; Whitworth DE; James PE; Rowlands R; Madhusoodanan NPT; Baijoo MR; Livingstone PG
    Probiotics Antimicrob Proteins; 2023 Feb; 15(1):202-214. PubMed ID: 36586039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial Peptide Combination Can Hinder Resistance Evolution.
    Maron B; Rolff J; Friedman J; Hayouka Z
    Microbiol Spectr; 2022 Aug; 10(4):e0097322. PubMed ID: 35862981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.