BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34287505)

  • 41. Biological control of fungal pathogens of tomato (Lycopersicon esculentum) by chitinolytic bacterial strains.
    Malik MS; Haider S; Rehman A; Rehman SU; Jamil M; Naz I; Anees M
    J Basic Microbiol; 2022 Jan; 62(1):48-62. PubMed ID: 34893989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of biofilm formation by Cd
    Yang W; Yan H; Zhang J; Gao Y; Xu W; Shang J; Luo Y
    Microbiol Res; 2018 Oct; 215():1-6. PubMed ID: 30172295
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antagonistic Effect of Plant Growth-Promoting Fungi Against Fusarium Wilt Disease in Tomato: In vitro and In vivo Study.
    Attia MS; El-Wakil DA; Hashem AH; Abdelaziz AM
    Appl Biochem Biotechnol; 2022 Nov; 194(11):5100-5118. PubMed ID: 35689755
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of the Biocontrol Potential of
    Lan X; Zhang J; Zong Z; Ma Q; Wang Y
    Biomed Res Int; 2017; 2017():4101357. PubMed ID: 28303252
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum).
    Kushwaha P; Kashyap PL; Srivastava AK; Tiwari RK
    Braz J Microbiol; 2020 Mar; 51(1):229-241. PubMed ID: 31642002
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The mononuclear nickel(II) complex bis(azido-κN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ
    Zine H; Rifai LA; Koussa T; Bentiss F; Guesmi S; Laachir A; Makroum K; Belfaiza M; Faize M
    Pest Manag Sci; 2017 Jan; 73(1):188-197. PubMed ID: 27040738
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid detection and identification of tomato vascular wilt pathogens using a DNA array.
    Lievens B; Brouwer M; Vanachter AC; Cammue BP; Thomma BP
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):569-81. PubMed ID: 15151292
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Streptomyces plicatus as a model biocontrol agent.
    Abd-Allah EF
    Folia Microbiol (Praha); 2001; 46(4):309-14. PubMed ID: 11830942
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Green Fluorescent Protein-Tagged Bacillus axarquiensis TUBP1 Reduced Cotton Verticillium Wilt Incidence by Altering Soil Rhizosphere Microbial Communities.
    Gao C; Wang B; Ma GC; Zeng H
    Curr Microbiol; 2021 Sep; 78(9):3562-3576. PubMed ID: 34347145
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Characteristics and identification of an antagonistic XJUL-6 against cotton verticillium wilt].
    Zhang HT; Yu PP; Abudula H; Xu TM; Mijit G
    Wei Sheng Wu Xue Bao; 2007 Dec; 47(6):1084-7. PubMed ID: 18271269
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antifungal Properties, Abiotic Stress Resistance, and Biocontrol Ability of Bacillus mojavensis PS17.
    Diabankana RGC; Afordoanyi DM; Safin RI; Nizamov RM; Karimova LZ; Validov SZ
    Curr Microbiol; 2021 Aug; 78(8):3124-3132. PubMed ID: 34173840
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assessment of Plant Growth Promotion Potential of Endophytic Bacterium B. subtilis KU21 Isolated from Rosmarinus officinalis.
    Sharma M; Sood G; Chauhan A
    Curr Microbiol; 2024 Jun; 81(7):207. PubMed ID: 38831110
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb.
    Berg G; Fritze A; Roskot N; Smalla K
    J Appl Microbiol; 2001 Dec; 91(6):963-71. PubMed ID: 11851803
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The novel bacteriocin BacYB1 produced by Leuconostoc mesenteroides YB1: From recent analytical characterization to biocontrol Verticillium dahliae and Agrobacterium tumefaciens.
    Chakchouk-Mtibaa A; Mechri S; Cheffi Azabou M; Triki MA; Smaoui S; Mellouli L
    Microb Pathog; 2024 Jul; 192():106680. PubMed ID: 38729380
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Screening Biocontrol Agents for Cash Crop Fusarium Wilt Based on Fusaric Acid Tolerance and Antagonistic Activity against
    Guo Q; Li S; Dong L; Su Z; Wang P; Liu X; Ma P
    Toxins (Basel); 2023 Jun; 15(6):. PubMed ID: 37368682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synergistic effect of oilseed cake and biocontrol agent in the suppression of Fusarium wilt in Solanum lycopersicum.
    Jangir M; Sharma S; Sharma S
    Braz J Microbiol; 2020 Dec; 51(4):1929-1939. PubMed ID: 32770313
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biostimulation of tomato growth and biocontrol of Fusarium wilt disease using certain endophytic fungi.
    Abdelaziz AM; Kalaba MH; Hashem AH; Sharaf MH; Attia MS
    Bot Stud; 2022 Dec; 63(1):34. PubMed ID: 36484866
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogens.
    Lievens B; Brouwer M; Vanachter AC; Lévesque CA; Cammue BP; Thomma BP
    FEMS Microbiol Lett; 2003 Jun; 223(1):113-22. PubMed ID: 12799009
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inhibition of
    Niu Q; Lei S; Zhang G; Wu G; Tian Z; Chen K; Zhang L
    J Microbiol Biotechnol; 2024 May; 34(5):1040-1050. PubMed ID: 38604803
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antagonistic activity and mechanism of an isolated Streptomyces corchorusii stain AUH-1 against phytopathogenic fungi.
    Yang Y; Zhang SW; Li KT
    World J Microbiol Biotechnol; 2019 Sep; 35(9):145. PubMed ID: 31493267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.