These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 34287874)

  • 1. Roles of PLCĪ², PIP
    Hu B; Boyle CA; Lei S
    J Cell Physiol; 2022 Jan; 237(1):660-674. PubMed ID: 34287874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of TRPC5 channels, inwardly rectifying K
    Boyle CA; Hu B; Quaintance KL; Lei S
    J Physiol; 2021 Jun; 599(12):3101-3119. PubMed ID: 33871877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of V
    Lei S; Hu B; Rezagholizadeh N
    Neuropharmacology; 2021 Jun; 190():108565. PubMed ID: 33891950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PLCĪ²-Mediated Depletion of PIP
    Lei S; Boyle CA; Mastrud M
    eNeuro; 2022; 9(4):. PubMed ID: 35788107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vasopressin facilitates GABAergic transmission in rat hippocampus via activation of V(1A) receptors.
    Ramanathan G; Cilz NI; Kurada L; Hu B; Wang X; Lei S
    Neuropharmacology; 2012 Dec; 63(7):1218-26. PubMed ID: 22884625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic and signaling mechanisms involved in neurotensin-mediated excitation of central amygdala neurons.
    Lei S; Hu B
    Neuropharmacology; 2021 Sep; 196():108714. PubMed ID: 34271017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic signalling mechanisms involved in neurokinin-3 receptor-mediated augmentation of fear-potentiated startle response in the basolateral amygdala.
    Boyle CA; Hu B; Quaintance KL; Mastrud MR; Lei S
    J Physiol; 2022 Oct; 600(19):4325-4345. PubMed ID: 36030507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gq-Coupled Muscarinic Receptor Enhancement of KCNQ2/3 Channels and Activation of TRPC Channels in Multimodal Control of Excitability in Dentate Gyrus Granule Cells.
    Carver CM; Shapiro MS
    J Neurosci; 2019 Feb; 39(9):1566-1587. PubMed ID: 30593498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABA
    Breton JD; Stuart GJ
    Eur J Neurosci; 2017 Dec; 46(12):2859-2866. PubMed ID: 29131436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action of vasopressin on CA1 pyramidal neurons in rat hippocampal slices.
    Mizuno Y; Oomura Y; Hori N; Carpenter DO
    Brain Res; 1984 Sep; 309(2):241-6. PubMed ID: 6089958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phasic and tonic attenuation of EPSPs by inward rectifier K+ channels in rat hippocampal pyramidal cells.
    Takigawa T; Alzheimer C
    J Physiol; 2002 Feb; 539(Pt 1):67-75. PubMed ID: 11850502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of Oxytocin Receptors Excites Subicular Neurons by Multiple Signaling and Ionic Mechanisms.
    Hu B; Boyle CA; Lei S
    Cereb Cortex; 2021 Mar; 31(5):2402-2415. PubMed ID: 33341872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular pathways of V(1) and V(2) receptors activated by arginine vasopressin in rat hippocampal neurons.
    Omura T; Nabekura J; Akaike N
    J Biol Chem; 1999 Nov; 274(46):32762-70. PubMed ID: 10551836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 11,12 -Epoxyeicosatrienoic acid (11,12 EET) reduces excitability and excitatory transmission in the hippocampus.
    Mule NK; Orjuela Leon AC; Falck JR; Arand M; Marowsky A
    Neuropharmacology; 2017 Sep; 123():310-321. PubMed ID: 28526610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscarinic activation of inwardly rectifying K(+) conductance reduces EPSPs in rat hippocampal CA1 pyramidal cells.
    Seeger T; Alzheimer C
    J Physiol; 2001 Sep; 535(Pt 2):383-96. PubMed ID: 11533131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatostatin depresses the excitability of subicular bursting cells: Roles of inward rectifier K
    Hu B; Cilz NI; Lei S
    Hippocampus; 2017 Sep; 27(9):971-984. PubMed ID: 28558129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine vasopressin ameliorates spatial learning impairments in chronic cerebral hypoperfusion via V1a receptor and autophagy signaling partially.
    Yang C; Zhang X; Gao J; Wang M; Yang Z
    Transl Psychiatry; 2017 Jul; 7(7):e1174. PubMed ID: 28934194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of G-protein-activated inward rectifying K(+) (GIRK) channel currents upon GABAB receptor activation in rat supraoptic neurons.
    Harayama N; Kayano T; Moriya T; Kitamura N; Shibuya I; Tanaka-Yamamoto K; Uezono Y; Ueta Y; Sata T
    Brain Res; 2014 Dec; 1591():1-13. PubMed ID: 25451091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine vasopressin inhibits Kir6.1/SUR2B channel and constricts the mesenteric artery via V1a receptor and protein kinase C.
    Shi W; Cui N; Shi Y; Zhang X; Yang Y; Jiang C
    Am J Physiol Regul Integr Comp Physiol; 2007 Jul; 293(1):R191-9. PubMed ID: 17428891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The vasopressin-induced excitation of hypoglossal and facial motoneurons in young rats is mediated by V1a but not V1b receptors, and is independent of intracellular calcium signalling.
    Reymond-Marron I; Tribollet E; Raggenbass M
    Eur J Neurosci; 2006 Sep; 24(6):1565-74. PubMed ID: 17004920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.