BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34287909)

  • 1. Neuropeptide CART modulates dopamine turnover in the nucleus accumbens: Insights into the anatomy of rewarding circuits.
    Awathale SN; Choudhary AG; Subhedar NK; Kokare DM
    J Neurochem; 2021 Sep; 158(5):1172-1185. PubMed ID: 34287909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CART neurons in the lateral hypothalamus communicate with the nucleus accumbens shell via glutamatergic neurons in paraventricular thalamic nucleus to modulate reward behavior.
    Choudhary AG; Somalwar AR; Sagarkar S; Rale A; Sakharkar A; Subhedar NK; Kokare DM
    Brain Struct Funct; 2018 Apr; 223(3):1313-1328. PubMed ID: 29116427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of neuropeptide CART in the lateral hypothalamic-ventral tegmental area (LH-VTA) circuit in motivation.
    Somalwar AR; Shelkar GP; Subhedar NK; Kokare DM
    Behav Brain Res; 2017 Jan; 317():340-349. PubMed ID: 27686026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CART peptide in the nucleus accumbens shell acts downstream to dopamine and mediates the reward and reinforcement actions of morphine.
    Upadhya MA; Nakhate KT; Kokare DM; Singh U; Singru PS; Subhedar NK
    Neuropharmacology; 2012 Mar; 62(4):1823-33. PubMed ID: 22186082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cocaine- and amphetamine-regulated transcript peptide promotes reward seeking behavior in socially isolated rats.
    Somalwar AR; Choudhary AG; Balasubramanian N; Sakharkar AJ; Subhedar NK; Kokare DM
    Brain Res; 2020 Feb; 1728():146595. PubMed ID: 31830460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cocaine- and amphetamine-regulated transcript peptide (CART) induced reward behavior is mediated via G
    Somalwar AR; Choudhary AG; Sharma PR; B N; Sagarkar S; Sakharkar AJ; Subhedar NK; Kokare DM
    Behav Brain Res; 2018 Aug; 348():9-21. PubMed ID: 29580892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual projections of single orexin- or CART-immunoreactive, lateral hypothalamic neurons to the paraventricular thalamic nucleus and nucleus accumbens shell in the rat: Light microscopic study.
    Lee EY; Lee HS
    Brain Res; 2016 Mar; 1634():104-118. PubMed ID: 26778175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurochemical evidence that cocaine- and amphetamine-regulated transcript (CART) 55-102 peptide modulates the dopaminergic reward system by decreasing the dopamine release in the mouse nucleus accumbens.
    Rakovska A; Baranyi M; Windisch K; Petkova-Kirova P; Gagov H; Kalfin R
    Brain Res Bull; 2017 Sep; 134():246-252. PubMed ID: 28802898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuropeptide Y system in accumbens shell mediates ethanol self-administration in posterior ventral tegmental area.
    Borkar CD; Upadhya MA; Shelkar GP; Subhedar NK; Kokare DM
    Addict Biol; 2016 Jul; 21(4):766-75. PubMed ID: 25929272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypothalamic, feeding/arousal-related peptidergic projections to the paraventricular thalamic nucleus in the rat.
    Lee JS; Lee EY; Lee HS
    Brain Res; 2015 Feb; 1598():97-113. PubMed ID: 25529631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine receptor sub-types involvement in nucleus accumbens and ventral tegmentum but not in medial prefrontal cortex: on self-stimulation of lateral hypothalamus and ventral mesencephalon.
    Singh J; Desiraju T; Raju TR
    Behav Brain Res; 1997 Jul; 86(2):171-9. PubMed ID: 9134152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microinjections of acetaldehyde or salsolinol into the posterior ventral tegmental area increase dopamine release in the nucleus accumbens shell.
    Deehan GA; Engleman EA; Ding ZM; McBride WJ; Rodd ZA
    Alcohol Clin Exp Res; 2013 May; 37(5):722-9. PubMed ID: 23278868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine and glutamate release in the nucleus accumbens and ventral tegmental area of rat following lateral hypothalamic self-stimulation.
    You ZB; Chen YQ; Wise RA
    Neuroscience; 2001; 107(4):629-39. PubMed ID: 11720786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats.
    Melis MR; Melis T; Cocco C; Succu S; Sanna F; Pillolla G; Boi A; Ferri GL; Argiolas A
    Eur J Neurosci; 2007 Aug; 26(4):1026-35. PubMed ID: 17672853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumbens shell-hypothalamus interactions mediate extinction of alcohol seeking.
    Millan EZ; Furlong TM; McNally GP
    J Neurosci; 2010 Mar; 30(13):4626-35. PubMed ID: 20357113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of CART in feeding and reward circuits in binge eating rat model.
    Bharne AP; Borkar CD; Subhedar NK; Kokare DM
    Behav Brain Res; 2015 Sep; 291():219-231. PubMed ID: 26008155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NPY mediates reward activity of morphine, via NPY Y1 receptors, in the nucleus accumbens shell.
    Desai SJ; Upadhya MA; Subhedar NK; Kokare DM
    Behav Brain Res; 2013 Jun; 247():79-91. PubMed ID: 23511250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of nitrergic system in the brain of rat conditioned to intracranial self-stimulation.
    Choudhary AG; Awathale SN; Dudhabhate BB; Pawar N; Jadhav G; Upadhya MA; Khedkar T; Gadhikar YA; Sakharkar AJ; Subhedar NK; Kokare DM
    J Neurochem; 2024 Mar; ():. PubMed ID: 38445395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CART peptide increases the mesolimbic dopaminergic neuronal activity: a microdialysis study.
    Yang SC; Pan JT; Li HY
    Eur J Pharmacol; 2004 Jun; 494(2-3):179-82. PubMed ID: 15212972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha-melanocyte stimulating hormone modulates ethanol self-administration in posterior ventral tegmental area through melanocortin-4 receptors.
    Shelkar GP; Kale AD; Singh U; Singru PS; Subhedar NK; Kokare DM
    Addict Biol; 2015 Mar; 20(2):302-15. PubMed ID: 24635847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.