These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 34287931)
21. Gene expression activity and pathway selection for sucrose metabolism in developing storage root of sweet potato. Li XQ; Zhang D Plant Cell Physiol; 2003 Jun; 44(6):630-6. PubMed ID: 12826628 [TBL] [Abstract][Full Text] [Related]
22. Effect of high pressure on the saccharification of starch in the tuberous root of sweet potato (Ipomoea batatas). Shigematsu T; Furukawa N; Takaoka R; Hayashi M; Sasao S; Ueno S; Nakajima K; Kido M; Nomura K; Iguchi A Biophys Chem; 2017 Dec; 231():105-110. PubMed ID: 28506613 [TBL] [Abstract][Full Text] [Related]
23. Starch content differences between two sweet potato accessions are associated with specific changes in gene expression. Yang S; Liu X; Qiao S; Tan W; Li M; Feng J; Zhang C; Kang X; Huang T; Zhu Y; Yang L; Wang D Funct Integr Genomics; 2018 Nov; 18(6):613-625. PubMed ID: 29754269 [TBL] [Abstract][Full Text] [Related]
24. Drought-Induced Responses of Nitrogen Metabolism in Xia H; Xu T; Zhang J; Shen K; Li Z; Liu J Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33050634 [TBL] [Abstract][Full Text] [Related]
25. Altered carbohydrate metabolism in the storage roots of sweet potato plants overexpressing the SRF1 gene, which encodes a Dof zinc finger transcription factor. Tanaka M; Takahata Y; Nakayama H; Nakatani M; Tahara M Planta; 2009 Sep; 230(4):737-46. PubMed ID: 19618208 [TBL] [Abstract][Full Text] [Related]
26. Identification of low-Cd cultivars of sweet potato (Ipomoea batatas (L.) Lam.) after growing on Cd-contaminated soil: uptake and partitioning to the edible roots. Huang B; Xin J; Dai H; Zhou W; Peng L Environ Sci Pollut Res Int; 2015 Aug; 22(15):11813-21. PubMed ID: 25860549 [TBL] [Abstract][Full Text] [Related]
27. A proteomic analysis of storage stress responses in Ipomoea batatas (L.) Lam. tuberous root. Jiang Y; Chen C; Tao X; Wang J; Zhang Y Mol Biol Rep; 2012 Aug; 39(8):8015-25. PubMed ID: 22547271 [TBL] [Abstract][Full Text] [Related]
28. Transcriptomic analysis of tuberous root in two sweet potato varieties reveals the important genes and regulatory pathways in tuberous root development. Cai Z; Cai Z; Huang J; Wang A; Ntambiyukuri A; Chen B; Zheng G; Li H; Huang Y; Zhan J; Xiao D; He L BMC Genomics; 2022 Jun; 23(1):473. PubMed ID: 35761189 [TBL] [Abstract][Full Text] [Related]
29. Split application enhances sweetpotato starch production by regulating the conversion of sucrose to starch under reduced nitrogen supply. Du X; Zhang X; Xi M; Kong L Plant Physiol Biochem; 2020 Jun; 151():743-750. PubMed ID: 32361224 [TBL] [Abstract][Full Text] [Related]
30. Changes in oxalate composition and other nutritive traits in root tubers and shoots of sweet potato (Ipomoea batatas L. [Lam.]) under water stress. Gouveia CS; Ganança JF; Lebot V; Pinheiro de Carvalho MÂ J Sci Food Agric; 2020 Mar; 100(4):1702-1710. PubMed ID: 31803935 [TBL] [Abstract][Full Text] [Related]
31. Identification of genes possibly related to storage root induction in sweet potato. You MK; Hur CG; Ahn YS; Suh MC; Jeong BC; Shin JS; Bae JM FEBS Lett; 2003 Feb; 536(1-3):101-5. PubMed ID: 12586346 [TBL] [Abstract][Full Text] [Related]
32. Cyclic variable temperature conditioning induces the rapid sweetening of sweet potato tuberous roots by regulating the sucrose metabolism. Yuan J; Zhang J; Hu W; Liu X; Murtaza A; Iqbal A; Hu X; Wang L; Xu X; Pan S Food Chem; 2024 Feb; 433():137364. PubMed ID: 37688819 [TBL] [Abstract][Full Text] [Related]
33. Changes in carbon allocation and subplastidal amyloplast structures of specialised Ipomoea batatas (sweet potato) storage root phenotypes. Drapal M; Gerrish C; Fraser PD Phytochemistry; 2022 Nov; 203():113409. PubMed ID: 36049525 [TBL] [Abstract][Full Text] [Related]
34. Dynamic network biomarker analysis discovers IbNAC083 in the initiation and regulation of sweet potato root tuberization. He S; Wang H; Hao X; Wu Y; Bian X; Yin M; Zhang Y; Fan W; Dai H; Yuan L; Zhang P; Chen L Plant J; 2021 Nov; 108(3):793-813. PubMed ID: 34460981 [TBL] [Abstract][Full Text] [Related]
35. Analysis of genes developmentally regulated during storage root formation of sweet potato. Tanaka M; Takahata Y; Nakatani M J Plant Physiol; 2005 Jan; 162(1):91-102. PubMed ID: 15700424 [TBL] [Abstract][Full Text] [Related]
36. Nitrogen- and storage-affected carbohydrate partitioning in high-light-adapted Pelargonium cuttings in relation to survival and adventitious root formation under low light. Druege U; Zerche S; Kadner R Ann Bot; 2004 Dec; 94(6):831-42. PubMed ID: 15509634 [TBL] [Abstract][Full Text] [Related]
37. The H Fan W; Zhang Y; Wu Y; Zhou W; Yang J; Yuan L; Zhang P; Wang H Hortic Res; 2021 Feb; 8(1):20. PubMed ID: 33518705 [TBL] [Abstract][Full Text] [Related]
38. Foliar application of glycinebetaine regulates soluble sugars and modulates physiological adaptations in sweet potato (Ipomoea batatas) under water deficit. Tisarum R; Theerawitaya C; Samphumphuang T; Singh HP; Cha-Um S Protoplasma; 2020 Jan; 257(1):197-211. PubMed ID: 31407117 [TBL] [Abstract][Full Text] [Related]
40. Identification of candidate miRNAs related in storage root development of sweet potato by high throughput sequencing. Tang C; Han R; Zhou Z; Yang Y; Zhu M; Xu T; Wang A; Li Z; Dong T J Plant Physiol; 2020 Aug; 251():153224. PubMed ID: 32634748 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]