These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34287936)
1. Technical Note: Scanner dependence of adaptive statistical iterative reconstruction with 3D noise power spectrum central frequency and noise magnitude ratios. Hasegawa A; Ishihara T; Allan Thomas M; Pan T Med Phys; 2021 Sep; 48(9):4993-5003. PubMed ID: 34287936 [TBL] [Abstract][Full Text] [Related]
2. Technical Note: Impact on central frequency and noise magnitude ratios by advanced CT image reconstruction techniques. Pan T; Hasegawa A; Luo D; Wu CC; Vikram R Med Phys; 2020 Feb; 47(2):480-487. PubMed ID: 31778233 [TBL] [Abstract][Full Text] [Related]
3. Noise reduction profile: A new method for evaluation of noise reduction techniques in CT. Hasegawa A; Ishihara T; Thomas MA; Pan T Med Phys; 2022 Jan; 49(1):186-200. PubMed ID: 34837717 [TBL] [Abstract][Full Text] [Related]
4. Validation of synthesized normal-resolution image data generated from high-resolution acquisitions on a commercial CT scanner. Hernandez AM; Shin DW; Abbey CK; Seibert JA; Akino N; Goto T; Vaishnav JY; Boedeker KL; Boone JM Med Phys; 2020 Oct; 47(10):4775-4785. PubMed ID: 32677085 [TBL] [Abstract][Full Text] [Related]
5. Quality evaluation of image-based iterative reconstruction for CT: Comparison with hybrid iterative reconstruction. Kawashima H; Ichikawa K; Matsubara K; Nagata H; Takata T; Kobayashi S J Appl Clin Med Phys; 2019 Jun; 20(6):199-205. PubMed ID: 31050148 [TBL] [Abstract][Full Text] [Related]
6. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: experimental assessment of noise performance. Li K; Tang J; Chen GH Med Phys; 2014 Apr; 41(4):041906. PubMed ID: 24694137 [TBL] [Abstract][Full Text] [Related]
7. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions. Brunner CC; Stern SH; Minniti R; Parry MI; Skopec M; Chakrabarti K Med Phys; 2013 Aug; 40(8):081917. PubMed ID: 23927331 [TBL] [Abstract][Full Text] [Related]
8. Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods. Chen B; Christianson O; Wilson JM; Samei E Med Phys; 2014 Jul; 41(7):071909. PubMed ID: 24989387 [TBL] [Abstract][Full Text] [Related]
9. Improving Low-contrast Detectability and Noise Texture Pattern for Computed Tomography Using Iterative Reconstruction Accelerated with Machine Learning Method: A Phantom Study. Funama Y; Takahashi H; Goto T; Aoki Y; Yoshida R; Kumagai Y; Awai K Acad Radiol; 2020 Jul; 27(7):929-936. PubMed ID: 31918961 [TBL] [Abstract][Full Text] [Related]
10. Characterization of a commercial hybrid iterative and model-based reconstruction algorithm in radiation oncology. Price RG; Vance S; Cattaneo R; Schultz L; Elshaikh MA; Chetty IJ; Glide-Hurst CK Med Phys; 2014 Aug; 41(8):081907. PubMed ID: 25086538 [TBL] [Abstract][Full Text] [Related]
11. Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm. Solomon J; Lyu P; Marin D; Samei E Med Phys; 2020 Sep; 47(9):3961-3971. PubMed ID: 32506661 [TBL] [Abstract][Full Text] [Related]
12. Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology. Samei E; Richard S Med Phys; 2015 Jan; 42(1):314-23. PubMed ID: 25563271 [TBL] [Abstract][Full Text] [Related]
13. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective. Brady SL; Yee BS; Kaufman RA Med Phys; 2012 Sep; 39(9):5520-31. PubMed ID: 22957619 [TBL] [Abstract][Full Text] [Related]
14. A method for characterizing and matching CT image quality across CT scanners from different manufacturers. Winslow J; Zhang Y; Samei E Med Phys; 2017 Nov; 44(11):5705-5717. PubMed ID: 28865170 [TBL] [Abstract][Full Text] [Related]
15. Radiation Dose Consideration in Kidney Stone CT Examinations: Integration of Iterative Reconstruction Algorithms With Routine Clinical Practice. Andrabi Y; Pianykh O; Agrawal M; Kambadakone A; Blake MA; Sahani DV AJR Am J Roentgenol; 2015 May; 204(5):1055-63. PubMed ID: 25905941 [TBL] [Abstract][Full Text] [Related]
16. Spatial resolution improvement and dose reduction potential for inner ear CT imaging using a z-axis deconvolution technique. McCollough CH; Leng S; Sunnegardh J; Vrieze TJ; Yu L; Lane J; Raupach R; Stierstorfer K; Flohr T Med Phys; 2013 Jun; 40(6):061904. PubMed ID: 23718595 [TBL] [Abstract][Full Text] [Related]
17. A Third-Generation Adaptive Statistical Iterative Reconstruction Technique: Phantom Study of Image Noise, Spatial Resolution, Lesion Detectability, and Dose Reduction Potential. Euler A; Solomon J; Marin D; Nelson RC; Samei E AJR Am J Roentgenol; 2018 Jun; 210(6):1301-1308. PubMed ID: 29702019 [TBL] [Abstract][Full Text] [Related]
18. Determining the radiation dose reduction potential for coronary calcium scanning with computed tomography: an anthropomorphic phantom study comparing filtered backprojection and the adaptive iterative dose reduction algorithm for image reconstruction. Blobel J; Mews J; Schuijf JD; Overlaet W Invest Radiol; 2013 Dec; 48(12):857-62. PubMed ID: 23917328 [TBL] [Abstract][Full Text] [Related]
19. Quantification and homogenization of image noise between two CT scanner models. Einstein SA; Rong XJ; Jensen CT; Liu X J Appl Clin Med Phys; 2020 Jan; 21(1):174-178. PubMed ID: 31859454 [TBL] [Abstract][Full Text] [Related]
20. Basics of iterative reconstruction methods in computed tomography: A vendor-independent overview. Stiller W Eur J Radiol; 2018 Dec; 109():147-154. PubMed ID: 30527298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]