These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 34288300)
1. Radical Stabilization of a Tripyridinium-Triazine Molecule Enables Reversible Storage of Multiple Electrons. Huang J; Hu S; Yuan X; Xiang Z; Huang M; Wan K; Piao J; Fu Z; Liang Z Angew Chem Int Ed Engl; 2021 Sep; 60(38):20921-20925. PubMed ID: 34288300 [TBL] [Abstract][Full Text] [Related]
3. Phenylene-Bridged Bispyridinium with High Capacity and Stability for Aqueous Flow Batteries. Hu S; Li T; Huang M; Huang J; Li W; Wang L; Chen Z; Fu Z; Li X; Liang Z Adv Mater; 2021 Feb; 33(7):e2005839. PubMed ID: 33448063 [TBL] [Abstract][Full Text] [Related]
4. Material Design of Aqueous Redox Flow Batteries: Fundamental Challenges and Mitigation Strategies. Li Z; Lu YC Adv Mater; 2020 Nov; 32(47):e2002132. PubMed ID: 33094532 [TBL] [Abstract][Full Text] [Related]
5. Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design. Zhong F; Yang M; Ding M; Jia C Front Chem; 2020; 8():451. PubMed ID: 32637392 [TBL] [Abstract][Full Text] [Related]
6. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
7. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System. Janoschka T; Martin N; Hager MD; Schubert US Angew Chem Int Ed Engl; 2016 Nov; 55(46):14427-14430. PubMed ID: 27754587 [TBL] [Abstract][Full Text] [Related]
13. Screening Viologen Derivatives for Neutral Aqueous Organic Redox Flow Batteries. Liu Y; Li Y; Zuo P; Chen Q; Tang G; Sun P; Yang Z; Xu T ChemSusChem; 2020 May; 13(9):2245-2249. PubMed ID: 32162480 [TBL] [Abstract][Full Text] [Related]
14. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery. Wei X; Xu W; Huang J; Zhang L; Walter E; Lawrence C; Vijayakumar M; Henderson WA; Liu T; Cosimbescu L; Li B; Sprenkle V; Wang W Angew Chem Int Ed Engl; 2015 Jul; 54(30):8684-7. PubMed ID: 25891480 [TBL] [Abstract][Full Text] [Related]
15. A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries. Luo J; Hu B; Debruler C; Liu TL Angew Chem Int Ed Engl; 2018 Jan; 57(1):231-235. PubMed ID: 29181865 [TBL] [Abstract][Full Text] [Related]
16. A quantitative evaluation of computational methods to accelerate the study of alloxazine-derived electroactive compounds for energy storage. Zhang Q; Khetan A; Er S Sci Rep; 2021 Feb; 11(1):4089. PubMed ID: 33603045 [TBL] [Abstract][Full Text] [Related]
17. Ultrafast Carrier Transport through an Advanced Thick Electrode with a High Areal Capacity for Aqueous Lithium-Ion Batteries. Chen YC; Hsu YK ChemSusChem; 2020 Jul; 13(13):3479-3487. PubMed ID: 32301264 [TBL] [Abstract][Full Text] [Related]
18. Improved radical stability of viologen anolytes in aqueous organic redox flow batteries. Hu B; Tang Y; Luo J; Grove G; Guo Y; Liu TL Chem Commun (Camb); 2018 Jun; 54(50):6871-6874. PubMed ID: 29741542 [TBL] [Abstract][Full Text] [Related]
19. Bioderived Molecular Electrodes for Next-Generation Energy-Storage Materials. Miroshnikov M; Mahankali K; Thangavel NK; Satapathy S; Arava LMR; Ajayan PM; John G ChemSusChem; 2020 May; 13(9):2186-2204. PubMed ID: 32100420 [TBL] [Abstract][Full Text] [Related]
20. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte. Zhang C; Ding Y; Zhang L; Wang X; Zhao Y; Zhang X; Yu G Angew Chem Int Ed Engl; 2017 Jun; 56(26):7454-7459. PubMed ID: 28494114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]