BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34288312)

  • 1. Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity*.
    Chernowsky CP; Chmiel AF; Wickens ZK
    Angew Chem Int Ed Engl; 2021 Sep; 60(39):21418-21425. PubMed ID: 34288312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
    Yoon TP
    Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkyl Radical Addition to Aliphatic and Aromatic
    Cullen STJ; Friestad GK
    Org Lett; 2019 Oct; 21(20):8290-8294. PubMed ID: 31560554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-innocent Radical Ion Intermediates in Photoredox Catalysis: Parallel Reduction Modes Enable Coupling of Diverse Aryl Chlorides.
    Chmiel AF; Williams OP; Chernowsky CP; Yeung CS; Wickens ZK
    J Am Chem Soc; 2021 Jul; 143(29):10882-10889. PubMed ID: 34255971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A General Copper-based Photoredox Catalyst for Organic Synthesis: Scope, Application in Natural Product Synthesis and Mechanistic Insights.
    Deldaele C; Michelet B; Baguia H; Kajouj S; Romero E; Moucheron C; Evano G
    Chimia (Aarau); 2018 Sep; 72(9):621-629. PubMed ID: 30257738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of Oxygen α-Nucleophilic Addition to α,β-Unsaturated Amides Catalyzed by Redox-Neutral Organic Photoreductant.
    Luan ZH; Qu JP; Kang YB
    J Am Chem Soc; 2020 Dec; 142(50):20942-20947. PubMed ID: 33263989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.
    Staveness D; Bosque I; Stephenson CR
    Acc Chem Res; 2016 Oct; 49(10):2295-2306. PubMed ID: 27529484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling Potent Photooxidation Behavior of Catalytic Photoreductants.
    Targos K; Williams OP; Wickens ZK
    J Am Chem Soc; 2021 Mar; 143(11):4125-4132. PubMed ID: 33724018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophotocatalysis: Combining Light and Electricity to Catalyze Reactions.
    Huang H; Steiniger KA; Lambert TH
    J Am Chem Soc; 2022 Jul; 144(28):12567-12583. PubMed ID: 35816101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp(3)-sp(2) Cross-Coupling.
    Tellis JC; Kelly CB; Primer DN; Jouffroy M; Patel NR; Molander GA
    Acc Chem Res; 2016 Jul; 49(7):1429-39. PubMed ID: 27379472
    [TBL] [