BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 34288725)

  • 41. Maturation of human intestinal organoids in vitro facilitates colonization by commensal lactobacilli by reinforcing the mucus layer.
    Son YS; Ki SJ; Thanavel R; Kim JJ; Lee MO; Kim J; Jung CR; Han TS; Cho HS; Ryu CM; Kim SH; Park DS; Son MY
    FASEB J; 2020 Aug; 34(8):9899-9910. PubMed ID: 32602623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the biomechanics of stem cell niche formation in the gut--modelling growing organoids.
    Buske P; Przybilla J; Loeffler M; Sachs N; Sato T; Clevers H; Galle J
    FEBS J; 2012 Sep; 279(18):3475-87. PubMed ID: 22632461
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pluripotent stem cell derived intestinal organoids with an enteric nervous system.
    Loffet E; Brossard L; Mahe MM
    Methods Cell Biol; 2020; 159():175-199. PubMed ID: 32586442
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intestinal stem cells and intestinal organoids.
    Zhao Q; Guan J; Wang X
    J Genet Genomics; 2020 Jun; 47(6):289-299. PubMed ID: 32883604
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Primary Intestinal Epithelial Organoid Culture.
    Mizutani T; Clevers H
    Methods Mol Biol; 2020; 2171():185-200. PubMed ID: 32705642
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids.
    DiMarco RL; Dewi RE; Bernal G; Kuo C; Heilshorn SC
    Biomater Sci; 2015 Oct; 3(10):1376-85. PubMed ID: 26371971
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development and application of human adult stem or progenitor cell organoids.
    Rookmaaker MB; Schutgens F; Verhaar MC; Clevers H
    Nat Rev Nephrol; 2015 Sep; 11(9):546-54. PubMed ID: 26215513
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays.
    Brandenberg N; Hoehnel S; Kuttler F; Homicsko K; Ceroni C; Ringel T; Gjorevski N; Schwank G; Coukos G; Turcatti G; Lutolf MP
    Nat Biomed Eng; 2020 Sep; 4(9):863-874. PubMed ID: 32514094
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Developing liver organoids from induced pluripotent stem cells (iPSCs): An alternative source of organoid generation for liver cancer research.
    Nguyen R; Da Won Bae S; Qiao L; George J
    Cancer Lett; 2021 Jun; 508():13-17. PubMed ID: 33771683
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Generation of hepatobiliary organoids from human induced pluripotent stem cells.
    Wu F; Wu D; Ren Y; Huang Y; Feng B; Zhao N; Zhang T; Chen X; Chen S; Xu A
    J Hepatol; 2019 Jun; 70(6):1145-1158. PubMed ID: 30630011
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling Intestinal Stem Cell Function with Organoids.
    Takahashi T; Fujishima K; Kengaku M
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681571
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mother cells control daughter cell proliferation in intestinal organoids to minimize proliferation fluctuations.
    Huelsz-Prince G; Kok RNU; Goos Y; Bruens L; Zheng X; Ellenbroek S; Van Rheenen J; Tans S; van Zon JS
    Elife; 2022 Nov; 11():. PubMed ID: 36445322
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human airway organoid engineering as a step toward lung regeneration and disease modeling.
    Tan Q; Choi KM; Sicard D; Tschumperlin DJ
    Biomaterials; 2017 Jan; 113():118-132. PubMed ID: 27815996
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intestinal Commitment and Maturation of Human Pluripotent Stem Cells Is Independent of Exogenous FGF4 and R-spondin1.
    Tamminen K; Balboa D; Toivonen S; Pakarinen MP; Wiener Z; Alitalo K; Otonkoski T
    PLoS One; 2015; 10(7):e0134551. PubMed ID: 26230325
    [TBL] [Abstract][Full Text] [Related]  

  • 55.
    Tsai YH; Nattiv R; Dedhia PH; Nagy MS; Chin AM; Thomson M; Klein OD; Spence JR
    Development; 2017 Mar; 144(6):1045-1055. PubMed ID: 27927684
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Generation of intestinal chemosensory cells from nonhuman primate organoids.
    Inaba A; Kumaki S; Arinaga A; Tanaka K; Aihara E; Yamane T; Oishi Y; Imai H; Iwatsuki K
    Biochem Biophys Res Commun; 2021 Jan; 536():20-25. PubMed ID: 33360094
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Human stem cell-based disease modeling: prospects and challenges.
    Johnson JZ; Hockemeyer D
    Curr Opin Cell Biol; 2015 Dec; 37():84-90. PubMed ID: 26546888
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pluripotent stem cell-derived kidney organoids: An in vivo-like in vitro technology.
    Schutgens F; Verhaar MC; Rookmaaker MB
    Eur J Pharmacol; 2016 Nov; 790():12-20. PubMed ID: 27375081
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An Efficient Intestinal Organoid System of Direct Sorting to Evaluate Stem Cell Competition in Vitro.
    Fujimichi Y; Otsuka K; Tomita M; Iwasaki T
    Sci Rep; 2019 Dec; 9(1):20297. PubMed ID: 31889051
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering human hepato-biliary-pancreatic organoids from pluripotent stem cells.
    Koike H; Iwasawa K; Ouchi R; Maezawa M; Kimura M; Kodaka A; Nishii S; Thompson WL; Takebe T
    Nat Protoc; 2021 Feb; 16(2):919-936. PubMed ID: 33432231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.