BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34289063)

  • 1. Stabilization and structural changes of 2D DNA origami by enzymatic ligation.
    Rajendran A; Krishnamurthy K; Giridasappa A; Nakata E; Morii T
    Nucleic Acids Res; 2021 Aug; 49(14):7884-7900. PubMed ID: 34289063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the stability of DNA origami nanostructures: staple strand redesign versus enzymatic ligation.
    Ramakrishnan S; Schärfen L; Hunold K; Fricke S; Grundmeier G; Schlierf M; Keller A; Krainer G
    Nanoscale; 2019 Sep; 11(35):16270-16276. PubMed ID: 31455950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near Quantitative Ligation Results in Resistance of DNA Origami Against Nuclease and Cell Lysate.
    Krishnamurthy K; Rajendran A; Nakata E; Morii T
    Small Methods; 2024 Jan; 8(1):e2300999. PubMed ID: 37736703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands.
    He K; Li Z; Liu L; Zheng M; Mao C
    Chembiochem; 2020 Aug; 21(15):2132-2136. PubMed ID: 32196869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct visualization of transient thermal response of a DNA origami.
    Song J; Arbona JM; Zhang Z; Liu L; Xie E; Elezgaray J; Aime JP; Gothelf KV; Besenbacher F; Dong M
    J Am Chem Soc; 2012 Jun; 134(24):9844-7. PubMed ID: 22646845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the thermal behavior of DNA origami nanostructures.
    Wei X; Nangreave J; Jiang S; Yan H; Liu Y
    J Am Chem Soc; 2013 Apr; 135(16):6165-76. PubMed ID: 23537246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isothermal hybridization kinetics of DNA assembly of two-dimensional DNA origami.
    Song J; Zhang Z; Zhang S; Liu L; Li Q; Xie E; Gothelf KV; Besenbacher F; Dong M
    Small; 2013 Sep; 9(17):2954-9. PubMed ID: 23436715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Ionic Strength on the Thermal Stability of DNA Origami Nanostructures.
    Hanke M; Tomm E; Grundmeier G; Keller A
    Chembiochem; 2023 Jun; 24(12):e202300338. PubMed ID: 37140402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Staple Age on DNA Origami Nanostructure Assembly and Stability.
    Kielar C; Xin Y; Xu X; Zhu S; Gorin N; Grundmeier G; Möser C; Smith DM; Keller A
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31315177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural stability of DNA origami nanostructures in the presence of chaotropic agents.
    Ramakrishnan S; Krainer G; Grundmeier G; Schlierf M; Keller A
    Nanoscale; 2016 May; 8(19):10398-405. PubMed ID: 27142120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isothermal assembly of DNA origami structures using denaturing agents.
    Jungmann R; Liedl T; Sobey TL; Shih W; Simmel FC
    J Am Chem Soc; 2008 Aug; 130(31):10062-3. PubMed ID: 18613687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isothermal DNA origami folding: avoiding denaturing conditions for one-pot, hybrid-component annealing.
    Kopielski A; Schneider A; Csáki A; Fritzsche W
    Nanoscale; 2015 Feb; 7(5):2102-6. PubMed ID: 25558850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration.
    Chen H; Weng TW; Riccitelli MM; Cui Y; Irudayaraj J; Choi JH
    J Am Chem Soc; 2014 May; 136(19):6995-7005. PubMed ID: 24749534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhombic-Shaped Nanostructures and Mechanical Properties of 2D DNA Origami Constructed with Different Crossover/Nick Designs.
    Ma Z; Huang Y; Park S; Kawai K; Kim DN; Hirai Y; Tsuchiya T; Yamada H; Tabata O
    Small; 2018 Jan; 14(1):. PubMed ID: 29131541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sturdier DNA nanotubes via ligation.
    O'Neill P; Rothemund PW; Kumar A; Fygenson DK
    Nano Lett; 2006 Jul; 6(7):1379-83. PubMed ID: 16834415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Assembly of DNA Origami on a Lipid Bilayer Observed Using High-Speed Atomic Force Microscopy.
    Endo M
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically Conjugated Branched Staples for Super-DNA Origami.
    Wang Y; Wang H; Li Y; Yang C; Tang Y; Lu X; Fan J; Tang W; Shang Y; Yan H; Liu J; Ding B
    J Am Chem Soc; 2024 Feb; 146(6):4178-4186. PubMed ID: 38301245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical ligation of an entire DNA origami nanostructure.
    Weizenmann N; Scheidgen-Kleyboldt G; Ye J; Krause CB; Kauert D; Helmi S; Rouillon C; Seidel R
    Nanoscale; 2021 Oct; 13(41):17556-17565. PubMed ID: 34657945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Measurement of Spatial Effects of DNA Origami on Molecular Binding Reactions Detected using Atomic Force Microscopy.
    Zhang P; Wang F; Liu W; Mao X; Hao C; Zhang Y; Fan C; Hu J; Wang L; Li B
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21973-21981. PubMed ID: 31117423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.