These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
616 related articles for article (PubMed ID: 34289193)
1. Jasmonic acid and salicylic acid play minor roles in stomatal regulation by CO Zamora O; Schulze S; Azoulay-Shemer T; Parik H; Unt J; Brosché M; Schroeder JI; Yarmolinsky D; Kollist H Plant J; 2021 Oct; 108(1):134-150. PubMed ID: 34289193 [TBL] [Abstract][Full Text] [Related]
2. Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. Du M; Zhai Q; Deng L; Li S; Li H; Yan L; Huang Z; Wang B; Jiang H; Huang T; Li CB; Wei J; Kang L; Li J; Li C Plant Cell; 2014 Jul; 26(7):3167-84. PubMed ID: 25005917 [TBL] [Abstract][Full Text] [Related]
3. Metabolomics of red-light-induced stomatal opening in Arabidopsis thaliana: Coupling with abscisic acid and jasmonic acid metabolism. Zhu M; Geng S; Chakravorty D; Guan Q; Chen S; Assmann SM Plant J; 2020 Mar; 101(6):1331-1348. PubMed ID: 31677315 [TBL] [Abstract][Full Text] [Related]
4. MPK9 and MPK12 function in SA-induced stomatal closure in Arabidopsis thaliana. Khokon MAR; Salam MA; Jammes F; Ye W; Hossain MA; Okuma E; Nakamura Y; Mori IC; Kwak JM; Murata Y Biosci Biotechnol Biochem; 2017 Jul; 81(7):1394-1400. PubMed ID: 28387156 [TBL] [Abstract][Full Text] [Related]
5. PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. Merilo E; Laanemets K; Hu H; Xue S; Jakobson L; Tulva I; Gonzalez-Guzman M; Rodriguez PL; Schroeder JI; Broschè M; Kollist H Plant Physiol; 2013 Jul; 162(3):1652-68. PubMed ID: 23703845 [TBL] [Abstract][Full Text] [Related]
6. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Savchenko T; Kolla VA; Wang CQ; Nasafi Z; Hicks DR; Phadungchob B; Chehab WE; Brandizzi F; Froehlich J; Dehesh K Plant Physiol; 2014 Mar; 164(3):1151-60. PubMed ID: 24429214 [TBL] [Abstract][Full Text] [Related]
7. Ethylene Inhibits Methyl Jasmonate-Induced Stomatal Closure by Modulating Guard Cell Slow-Type Anion Channel Activity via the OPEN STOMATA 1/SnRK2.6 Kinase-Independent Pathway in Arabidopsis. Munemasa S; Hirao Y; Tanami K; Mimata Y; Nakamura Y; Murata Y Plant Cell Physiol; 2019 Oct; 60(10):2263-2271. PubMed ID: 31241163 [TBL] [Abstract][Full Text] [Related]
8. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Zhang S; Li X; Sun Z; Shao S; Hu L; Ye M; Zhou Y; Xia X; Yu J; Shi K J Exp Bot; 2015 Apr; 66(7):1951-63. PubMed ID: 25657213 [TBL] [Abstract][Full Text] [Related]
9. PAMP-induced peptide 1 cooperates with salicylic acid to regulate stomatal immunity in Hou S; Shen H; Shao H Plant Signal Behav; 2019; 14(11):1666657. PubMed ID: 31526105 [TBL] [Abstract][Full Text] [Related]
10. Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Hossain MA; Munemasa S; Uraji M; Nakamura Y; Mori IC; Murata Y Plant Physiol; 2011 May; 156(1):430-8. PubMed ID: 21402795 [TBL] [Abstract][Full Text] [Related]
11. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways. Scalschi L; Vicedo B; Camañes G; Fernandez-Crespo E; Lapeña L; González-Bosch C; García-Agustín P Mol Plant Pathol; 2013 May; 14(4):342-55. PubMed ID: 23279078 [TBL] [Abstract][Full Text] [Related]
12. Involvement of OST1 Protein Kinase and PYR/PYL/RCAR Receptors in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis Guard Cells. Yin Y; Adachi Y; Nakamura Y; Munemasa S; Mori IC; Murata Y Plant Cell Physiol; 2016 Aug; 57(8):1779-90. PubMed ID: 27354421 [TBL] [Abstract][Full Text] [Related]
13. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing. Azoulay-Shemer T; Palomares A; Bagheri A; Israelsson-Nordstrom M; Engineer CB; Bargmann BO; Stephan AB; Schroeder JI Plant J; 2015 Aug; 83(4):567-81. PubMed ID: 26096271 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis. Proietti S; Caarls L; Coolen S; Van Pelt JA; Van Wees SCM; Pieterse CMJ Plant Cell Environ; 2018 Oct; 41(10):2342-2356. PubMed ID: 29852537 [TBL] [Abstract][Full Text] [Related]
16. Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina. Sánchez-Vallet A; López G; Ramos B; Delgado-Cerezo M; Riviere MP; Llorente F; Fernández PV; Miedes E; Estevez JM; Grant M; Molina A Plant Physiol; 2012 Dec; 160(4):2109-24. PubMed ID: 23037505 [TBL] [Abstract][Full Text] [Related]
17. Stomatal VPD Response: There Is More to the Story Than ABA. Merilo E; Yarmolinsky D; Jalakas P; Parik H; Tulva I; Rasulov B; Kilk K; Kollist H Plant Physiol; 2018 Jan; 176(1):851-864. PubMed ID: 28986421 [TBL] [Abstract][Full Text] [Related]
18. The 7B-1 mutation in tomato (Solanum lycopersicum L.) confers a blue light-specific lower sensitivity to coronatine, a toxin produced by Pseudomonas syringae pv. tomato. Bergougnoux V; Hlavácková V; Plotzová R; Novák O; Fellner M J Exp Bot; 2009; 60(4):1219-30. PubMed ID: 19213807 [TBL] [Abstract][Full Text] [Related]
19. Salicylic acid receptor NPR1 is involved in guard cell chitosan signaling. Prodhan Y; Issak M; Munemasa S; Nakamura Y; Murata Y Biosci Biotechnol Biochem; 2020 May; 84(5):963-969. PubMed ID: 31983298 [TBL] [Abstract][Full Text] [Related]
20. Ultraviolet radiation enhances salicylic acid-mediated defense signaling and resistance to Pseudomonas syringae DC3000 in a jasmonic acid-deficient tomato mutant. Escobar Bravo R; Chen G; Grosser K; Van Dam NM; Leiss KA; Klinkhamer PGL Plant Signal Behav; 2019; 14(4):e1581560. PubMed ID: 30782061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]