These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34289220)

  • 1. Microfluidic fabrication of imageable and resorbable polyethylene glycol microspheres for catheter embolization.
    Vogt K; Aryan L; Stealey S; Hall A; Pereira K; Zustiak SP
    J Biomed Mater Res A; 2022 Jan; 110(1):131-142. PubMed ID: 34289220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of "imageable" beads for transcatheter embolotherapy.
    Sharma KV; Dreher MR; Tang Y; Pritchard W; Chiesa OA; Karanian J; Peregoy J; Orandi B; Woods D; Donahue D; Esparza J; Jones G; Willis SL; Lewis AL; Wood BJ
    J Vasc Interv Radiol; 2010 Jun; 21(6):865-76. PubMed ID: 20494290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiopaque hydrogel microspheres.
    Thanoo BC; Jayakrishnan A
    J Microencapsul; 1989; 6(2):233-44. PubMed ID: 2723968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodality Imaging of Ethiodized Oil-loaded Radiopaque Microspheres during Transarterial Embolization of Rabbits with VX2 Liver Tumors.
    Tacher V; Duran R; Lin M; Sohn JH; Sharma KV; Wang Z; Chapiro J; Gacchina Johnson C; Bhagat N; Dreher MR; Schäfer D; Woods DL; Lewis AL; Tang Y; Grass M; Wood BJ; Geschwind JF
    Radiology; 2016 Jun; 279(3):741-53. PubMed ID: 26678453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray visible and uniform alginate microspheres loaded with in situ synthesized BaSO4 nanoparticles for in vivo transcatheter arterial embolization.
    Wang Q; Qian K; Liu S; Yang Y; Liang B; Zheng C; Yang X; Xu H; Shen AQ
    Biomacromolecules; 2015 Apr; 16(4):1240-6. PubMed ID: 25728288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inherently Radiopaque Narrow-Size-Calibrated Microspheres: Proof of Principle in a Pig Embolization Model.
    Sommer CM; Harms A; Do TD; Gockner TL; Kriegsmann M; Schlett CL; Holzer K; Vollherbst D; Warth A; Pereira PL; Eichwald V; Jugold M; Kauczor HU; Flechsig P
    Cardiovasc Intervent Radiol; 2018 Sep; 41(9):1404-1411. PubMed ID: 29858644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injectable PEG/polyester thermogel: A new liquid embolization agent for temporary vascular interventional therapy.
    Yang H; Lei K; Zhou F; Yang X; An Q; Zhu W; Yu L; Ding J
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():606-615. PubMed ID: 31147032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Chip Device for
    Sheth S; Stealey S; Morgan NY; Zustiak SP
    Langmuir; 2021 Oct; 37(40):11793-11803. PubMed ID: 34597052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic-prepared, monodisperse, X-ray-visible, embolic microspheres for non-oncological embolization applications.
    Beh CW; Fu Y; Weiss CR; Hu C; Arepally A; Mao HQ; Wang TH; Kraitchman DL
    Lab Chip; 2020 Oct; 20(19):3591-3600. PubMed ID: 32869821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra-articular fate of degradable poly(ethyleneglycol)-hydrogel microspheres as carriers for sustained drug delivery.
    Bédouet L; Pascale F; Moine L; Wassef M; Ghegediban SH; Nguyen VN; Bonneau M; Labarre D; Laurent A
    Int J Pharm; 2013 Nov; 456(2):536-44. PubMed ID: 23978631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, characterization, and evaluation of radiopaque hydrogel filaments for endovascular embolization.
    Constant MJ; Keeley EM; Cruise GM
    J Biomed Mater Res B Appl Biomater; 2009 May; 89(2):306-313. PubMed ID: 18823004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vitro Characterization of a Novel Type of Radiopaque Doxorubicin-Loaded Microsphere.
    Pan F; Schneider D; Ryschich E; Qian B; Vollherbst DF; Möhlenbruch MA; Jugold M; Eichwald V; Stenzel P; Pereira PL; Richter GM; Kauczor HU; Sommer CM; Do TD
    Cardiovasc Intervent Radiol; 2020 Apr; 43(4):636-647. PubMed ID: 31965224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Handling and performance characteristics of a new small caliber radiopaque embolic microsphere.
    Lewis AL; Caine M; Garcia P; Ashrafi K; Tang Y; Hinchcliffe L; Guo W; Bascal Z; Kilpatrick H; Willis SL
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2878-2888. PubMed ID: 32578348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tantalum-loaded polyurethane microspheres for particulate embolization: preparation and properties.
    Thanoo BC; Sunny MC; Jayakrishnan A
    Biomaterials; 1991 Jul; 12(5):525-8. PubMed ID: 1892990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and evaluation of biocompatible long-term radiopaque microspheres based on polyvinyl alcohol and lipiodol for embolization.
    Meng WJ; Lu XJ; Wang H; Fan TY; Cui DC; Zhang SS; Zheng ZZ; Guan HT; Song L; Zou YH
    J Biomater Appl; 2015 Aug; 30(2):133-46. PubMed ID: 25766037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The feasibility of degradable glass microspheres as transient embolic medical devices.
    Doucet J; MacDonald K; Lee C; Hana RA; Soulez G; Boyd D
    J Biomater Appl; 2021 Jan; 35(6):615-632. PubMed ID: 32722998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of silk microsphere formation using polyethylene glycol (PEG).
    Wu J; Zheng Z; Li G; Kaplan DL; Wang X
    Acta Biomater; 2016 Jul; 39():156-168. PubMed ID: 27181879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-demand degradable embolic microspheres for immediate restoration of blood flow during image-guided embolization procedures.
    Choi H; Choi B; Yu B; Li W; Matsumoto MM; Harris KR; Lewandowski RJ; Larson AC; Mouli SK; Kim DH
    Biomaterials; 2021 Jan; 265():120408. PubMed ID: 32992115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-Clotting of Platelet-Rich Plasma Upon Loading in Hydrogel Microspheres Leads to Prolonged Protein Release and Slower Microsphere Degradation.
    Choi MH; Blanco A; Stealey S; Duan X; Case N; Sell SA; Rai MF; Zustiak SP
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32751604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles.
    Wang Q; Zhang D; Xu H; Yang X; Shen AQ; Yang Y
    Lab Chip; 2012 Nov; 12(22):4781-6. PubMed ID: 22992786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.