BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 34289440)

  • 1. Determination of hardness for maize kernels based on hyperspectral imaging.
    Qiao M; Xu Y; Xia G; Su Y; Lu B; Gao X; Fan H
    Food Chem; 2022 Jan; 366():130559. PubMed ID: 34289440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed.
    Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Measuring the Moisture Content in Maize Kernel Based on Hyperspctral Image of Embryo Region].
    Tian X; Huang WQ; Li JB; Fan SX; Zhang BH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3237-42. PubMed ID: 30246759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of oil content in single maize kernel based on hyperspectral imaging and attention convolution neural network.
    Zhang L; An D; Wei Y; Liu J; Wu J
    Food Chem; 2022 Nov; 395():133563. PubMed ID: 35763927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis.
    Williams P; Geladi P; Fox G; Manley M
    Anal Chim Acta; 2009 Oct; 653(2):121-30. PubMed ID: 19808104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and Non-Destructive Prediction of Moisture Content in Maize Seeds Using Hyperspectral Imaging.
    Xue H; Xu X; Yang Y; Hu D; Niu G
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein content prediction in single wheat kernels using hyperspectral imaging.
    Caporaso N; Whitworth MB; Fisk ID
    Food Chem; 2018 Feb; 240():32-42. PubMed ID: 28946278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Rapid detection technology of chemical component content in Lycii Fructus based on hyperspectral technology].
    Liu LL; Wang YY; Yang J; Zhang XB
    Zhongguo Zhong Yao Za Zhi; 2023 Aug; 48(16):4328-4336. PubMed ID: 37802859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on the Rapid Evaluation of Total Volatile Basic Nitrogen (TVB-N) of Mutton by Hyperspectral Imaging Technique].
    Zhu RG; Yao XD; Duan HW; Ma BX; Tang MX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):806-10. PubMed ID: 27400528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel.
    Zhang L; Wang Y; Wei Y; An D
    Food Chem; 2022 Feb; 370():131047. PubMed ID: 34626928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system.
    Wu D; Shi H; Wang S; He Y; Bao Y; Liu K
    Anal Chim Acta; 2012 May; 726():57-66. PubMed ID: 22541014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and Non-Destructive Estimation of Moisture Content in Caragana Korshinskii Pellet Feed Using Hyperspectral Imaging.
    Yu Z; Chen X; Zhang J; Su Q; Wang K; Liu W
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of fumonisin content in maize using near-infrared hyperspectral imaging (NIR-HSI) technology and chemometric methods.
    Conceição RRP; Queiroz VAV; Medeiros EP; Araújo JB; Araújo DDS; Miguel RA; Stoianoff MAR; Simeone MLF
    Braz J Biol; 2024; 84():e277974. PubMed ID: 38808784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared hyperspectral imaging for detection and visualization of offal adulteration in ground pork.
    Jiang H; Ru Y; Chen Q; Wang J; Xu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119307. PubMed ID: 33348095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macro-micro exploration on dynamic interaction between aflatoxigenic Aspergillus flavus and maize kernels using Vis/NIR hyperspectral imaging and SEM technology.
    Lu Y; Jia B; Yoon SC; Ni X; Zhuang H; Guo B; Gold SE; Fountain JC; Glenn AE; Lawrence KC; Zhang F; Wang W; Lu J; Wei C; Jiang H; Luo J
    Int J Food Microbiol; 2024 May; 416():110661. PubMed ID: 38457888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Soluble-Solid Content in Citrus Fruit Using Visible-Near-Infrared Hyperspectral Imaging Based on Effective-Wavelength Selection Algorithm.
    Kim MJ; Yu WH; Song DJ; Chun SW; Kim MS; Lee A; Kim G; Shin BS; Mo C
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperspectral Imaging (HSI) Technology for the Non-Destructive Freshness Assessment of Pearl Gentian Grouper under Different Storage Conditions.
    Chen Z; Wang Q; Zhang H; Nie P
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33467476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative determination of total pigments in red meats using hyperspectral imaging and multivariate analysis.
    Xiong Z; Sun DW; Xie A; Pu H; Han Z; Luo M
    Food Chem; 2015 Jul; 178():339-45. PubMed ID: 25704721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of metmyoglobin in cooked tan mutton using Vis/NIR hyperspectral imaging system.
    Yuan R; Liu G; He J; Ma C; Cheng L; Fan N; Ban J; Li Y; Sun Y
    J Food Sci; 2020 May; 85(5):1403-1410. PubMed ID: 32304238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Visible and Near-Infrared Hyperspectral Imaging to Determine Soluble Protein Content in Oilseed Rape Leaves.
    Zhang C; Liu F; Kong W; He Y
    Sensors (Basel); 2015 Jul; 15(7):16576-88. PubMed ID: 26184198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.