BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 34289550)

  • 61. Application of Human Induced Pluripotent Stem Cell-Derived Intestinal Organoids as a Model of Epithelial Damage and Fibrosis in Inflammatory Bowel Disease.
    Onozato D; Akagawa T; Kida Y; Ogawa I; Hashita T; Iwao T; Matsunaga T
    Biol Pharm Bull; 2020; 43(7):1088-1095. PubMed ID: 32612071
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Generation of hiPSC-Derived Intestinal Organoids for Developmental and Disease Modelling Applications.
    Durczak PM; Fair KL; Jinks N; Cuevas Ocaña S; Sainz Zuñiga CB; Hannan NRF
    J Vis Exp; 2024 Mar; (205):. PubMed ID: 38526083
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Linking stem cell function and growth pattern of intestinal organoids.
    Thalheim T; Quaas M; Herberg M; Braumann UD; Kerner C; Loeffler M; Aust G; Galle J
    Dev Biol; 2018 Jan; 433(2):254-261. PubMed ID: 29198564
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium.
    Wang Y; Gunasekara DB; Reed MI; DiSalvo M; Bultman SJ; Sims CE; Magness ST; Allbritton NL
    Biomaterials; 2017 Jun; 128():44-55. PubMed ID: 28288348
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A Human 2D Primary Organoid-Derived Epithelial Monolayer Model to Study Host-Pathogen Interaction in the Small Intestine.
    Roodsant T; Navis M; Aknouch I; Renes IB; van Elburg RM; Pajkrt D; Wolthers KC; Schultsz C; van der Ark KCH; Sridhar A; Muncan V
    Front Cell Infect Microbiol; 2020; 10():272. PubMed ID: 32656095
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications.
    Sato T; Clevers H
    Science; 2013 Jun; 340(6137):1190-4. PubMed ID: 23744940
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cancer-initiating cells in human pancreatic cancer organoids are maintained by interactions with endothelial cells.
    Choi JI; Jang SI; Hong J; Kim CH; Kwon SS; Park JS; Lim JB
    Cancer Lett; 2021 Feb; 498():42-53. PubMed ID: 33188841
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Human intestinal organoids: Modeling gastrointestinal physiology and immunopathology - current applications and limitations.
    Flood P; Hanrahan N; Nally K; Melgar S
    Eur J Immunol; 2024 Feb; 54(2):e2250248. PubMed ID: 37957831
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cluster microRNAs miR-194 and miR-215 suppress the tumorigenicity of intestinal tumor organoids.
    Nakaoka T; Saito Y; Shimamoto Y; Muramatsu T; Kimura M; Kanai Y; Saito H
    Cancer Sci; 2017 Apr; 108(4):678-684. PubMed ID: 28092415
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Current Trends and Research Topics Regarding Intestinal Organoids: An Overview Based on Bibliometrics.
    Zhang MM; Yang KL; Cui YC; Zhou YS; Zhang HR; Wang Q; Ye YJ; Wang S; Jiang KW
    Front Cell Dev Biol; 2021; 9():609452. PubMed ID: 34414174
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Stem Cell-Derived Models of Viral Infections in the Gastrointestinal Tract.
    Lanik WE; Mara MA; Mihi B; Coyne CB; Good M
    Viruses; 2018 Mar; 10(3):. PubMed ID: 29534451
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Current applications of intestinal organoids: a review.
    Xiang T; Wang J; Li H
    Stem Cell Res Ther; 2024 May; 15(1):155. PubMed ID: 38816841
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Non-neuronal acetylcholine as an endogenous regulator of proliferation and differentiation of Lgr5-positive stem cells in mice.
    Takahashi T; Ohnishi H; Sugiura Y; Honda K; Suematsu M; Kawasaki T; Deguchi T; Fujii T; Orihashi K; Hippo Y; Watanabe T; Yamagaki T; Yuba S
    FEBS J; 2014 Oct; 281(20):4672-90. PubMed ID: 25143155
    [TBL] [Abstract][Full Text] [Related]  

  • 74. PP2A Deficiency Enhances Carcinogenesis of Lgr5
    Yen YT; Chien M; Lai YC; Chen DP; Chuong CM; Hung MC; Hung SC
    Cells; 2019 Dec; 9(1):. PubMed ID: 31905853
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Establishment and application of gastric and gastric cancer organoids].
    Fan S; Yin J; Wang M; Guan W
    Zhonghua Wei Chang Wai Ke Za Zhi; 2018 Nov; 21(11):1315-1320. PubMed ID: 30506544
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Generation of Mouse and Human Organoid-Forming Intestinal Progenitor Cells by Direct Lineage Reprogramming.
    Miura S; Suzuki A
    Cell Stem Cell; 2017 Oct; 21(4):456-471.e5. PubMed ID: 28943029
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Intestinal organoids: A versatile platform for modeling gastrointestinal diseases and monitoring epigenetic alterations.
    Ghorbaninejad M; Asadzadeh-Aghdaei H; Baharvand H; Meyfour A
    Life Sci; 2023 Apr; 319():121506. PubMed ID: 36858311
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Wnt Signaling in 3D: Recent Advances in the Applications of Intestinal Organoids.
    Merenda A; Fenderico N; Maurice MM
    Trends Cell Biol; 2020 Jan; 30(1):60-73. PubMed ID: 31718893
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids.
    Hernandez-Gordillo V; Kassis T; Lampejo A; Choi G; Gamboa ME; Gnecco JS; Brown A; Breault DT; Carrier R; Griffith LG
    Biomaterials; 2020 Sep; 254():120125. PubMed ID: 32502894
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Organoids derived from the digestive system and their perspective applications in exercise physiology].
    Zhang ZY; Xiang D; Luo BB
    Sheng Li Xue Bao; 2021 Jun; 73(3):509-517. PubMed ID: 34230952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.