These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 34289623)
1. Effect of alkaline lignin on immobilization of cadmium and lead in soils and the associated mechanisms. He L; Dai Z; Liu X; Tang C; Xu J Chemosphere; 2021 Oct; 281():130969. PubMed ID: 34289623 [TBL] [Abstract][Full Text] [Related]
2. Alkaline lignin does not immobilize cadmium in soils but decreases cadmium accumulation in the edible part of lettuce (Lactuca sativa L.). He L; Yu Y; Lin J; Hong Z; Dai Z; Liu X; Tang C; Xu J Environ Pollut; 2022 Oct; 310():119879. PubMed ID: 35931389 [TBL] [Abstract][Full Text] [Related]
3. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system. Xu C; Chen HX; Xiang Q; Zhu HH; Wang S; Zhu QH; Huang DY; Zhang YZ Environ Sci Pollut Res Int; 2018 Jan; 25(2):1147-1156. PubMed ID: 29079982 [TBL] [Abstract][Full Text] [Related]
4. Nano-FeS incorporated into stable lignin hydrogel: A novel strategy for cadmium removal from soil. Liu Y; Huang Y; Zhang C; Li W; Chen C; Zhang Z; Chen H; Wang J; Li Y; Zhang Y Environ Pollut; 2020 Sep; 264():114739. PubMed ID: 32434113 [TBL] [Abstract][Full Text] [Related]
5. Hydrothermally-altered feldspar as an environmentally-friendly technology to promote heavy metals immobilization: Batch studies and application in smelting-affected soils. Ribeiro PG; Souza JMP; Rodrigues M; Ribeiro ICA; de Carvalho TS; Lopes G; Li YC; Guilherme LRG J Environ Manage; 2021 Aug; 291():112711. PubMed ID: 33964625 [TBL] [Abstract][Full Text] [Related]
6. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Seshadri B; Bolan NS; Choppala G; Kunhikrishnan A; Sanderson P; Wang H; Currie LD; Tsang DCW; Ok YS; Kim G Chemosphere; 2017 Oct; 184():197-206. PubMed ID: 28595145 [TBL] [Abstract][Full Text] [Related]
7. [Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil]. Chang TJ; Cui XQ; Ruan Z; Zhao XL Huan Jing Ke Xue; 2014 Jun; 35(6):2381-91. PubMed ID: 25158521 [TBL] [Abstract][Full Text] [Related]
8. Effects of alkaline and bioorganic amendments on cadmium, lead, zinc, and nutrient accumulation in brown rice and grain yield in acidic paddy fields contaminated with a mixture of heavy metals. He H; Tam NF; Yao A; Qiu R; Li WC; Ye Z Environ Sci Pollut Res Int; 2016 Dec; 23(23):23551-23560. PubMed ID: 27614643 [TBL] [Abstract][Full Text] [Related]
9. The Adsorption and Desorption of Pb(2+) and Cd(2+) in Freeze-Thaw Treated Soils. Li L; Ma J; Xu M; Li X; Tao J; Wang G; Yu J; Guo P Bull Environ Contam Toxicol; 2016 Jan; 96(1):107-12. PubMed ID: 26644028 [TBL] [Abstract][Full Text] [Related]
10. [Simultaneous Immobilization of Arsenic, Lead, and Cadmium in Paddy Soils Using Two Iron-based Materials]. Yuan F; Tang XJ; Wu JZ; Zhao KL; Ye ZQ Huan Jing Ke Xue; 2021 Jul; 42(7):3535-3548. PubMed ID: 34212680 [TBL] [Abstract][Full Text] [Related]
11. Effects of pH and low molecular weight organic acids on competitive adsorption and desorption of cadmium and lead in paddy soils. Jiang H; Li T; Han X; Yang X; He Z Environ Monit Assess; 2012 Oct; 184(10):6325-35. PubMed ID: 22045331 [TBL] [Abstract][Full Text] [Related]
12. Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption-desorption on/from purple paddy soils. Zhao X; Jiang T; Du B Chemosphere; 2014 Mar; 99():41-8. PubMed ID: 24289979 [TBL] [Abstract][Full Text] [Related]
13. Attapulgite and processed oyster shell powder effectively reduce cadmium accumulation in grains of rice growing in a contaminated acidic paddy field. He L; Meng J; Wang Y; Tang X; Liu X; Tang C; Ma LQ; Xu J Ecotoxicol Environ Saf; 2021 Feb; 209():111840. PubMed ID: 33383343 [TBL] [Abstract][Full Text] [Related]
14. Remediation of cadmium and lead contaminated soils using Fe-OM based materials. Liu Q; Luo J; Tang J; Chen Z; Chen Z; Lin Q Chemosphere; 2022 Nov; 307(Pt 3):135853. PubMed ID: 35948099 [TBL] [Abstract][Full Text] [Related]
15. Soil liming effects on CH Khaliq MA; Khan Tarin MW; Jingxia G; Yanhui C; Guo W Environ Pollut; 2019 May; 248():408-420. PubMed ID: 30825766 [TBL] [Abstract][Full Text] [Related]
16. Immobilization of metals in contaminated soils using natural polymer-based stabilizers. Tao X; Li A; Yang H Environ Pollut; 2017 Mar; 222():348-355. PubMed ID: 28024809 [TBL] [Abstract][Full Text] [Related]
17. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Qin F; Shan XQ; Wei B Chemosphere; 2004 Oct; 57(4):253-63. PubMed ID: 15312723 [TBL] [Abstract][Full Text] [Related]
18. Potential of using a new aluminosilicate amendment for the remediation of paddy soil co-contaminated with Cd and Pb. Zhao H; Huang X; Liu F; Hu X; Zhao X; Wang L; Gao P; Li X; Ji P Environ Pollut; 2021 Jan; 269():116198. PubMed ID: 33296705 [TBL] [Abstract][Full Text] [Related]
19. Availability and vertical distribution of Cu, Cd, Ca, and P in soil as influenced by lime and apatite with different dosages: a 7-year field study. Cui H; Zhang W; Zhou J; Xu L; Zhang X; Zhang S; Zhou J Environ Sci Pollut Res Int; 2018 Dec; 25(35):35143-35153. PubMed ID: 30328042 [TBL] [Abstract][Full Text] [Related]
20. Quantitative transport and immobilization of cadmium in saturated-unsaturated soils with the combined application of biochar and organic fertilizer. Meng Z; Huang S; Mu W; Wu J; Lin Z Environ Sci Pollut Res Int; 2023 Apr; 30(16):47221-47233. PubMed ID: 36735122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]