These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 34289630)

  • 1. Understanding the mechanisms of biological struvite biomineralisation.
    Leng Y; Soares A
    Chemosphere; 2021 Oct; 281():130986. PubMed ID: 34289630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanisms of struvite biomineralization in municipal wastewater.
    Leng Y; Soares A
    Sci Total Environ; 2021 Dec; 799():149261. PubMed ID: 34371415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the biochemical characteristics of struvite bio-mineralising microorganisms and their future in nutrient recovery.
    Leng Y; Colston R; Soares A
    Chemosphere; 2020 May; 247():125799. PubMed ID: 31951952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors.
    Simoes F; Vale P; Stephenson T; Soares A
    Environ Technol; 2018 Sep; 39(17):2278-2287. PubMed ID: 29187072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological recovery of phosphorus from waste activated sludge via alkaline fermentation and struvite biomineralization by Brevibacterium antiquum.
    Coşgun S; Kara B; Kunt B; Hür C; Semerci N
    Biodegradation; 2022 Apr; 33(2):195-206. PubMed ID: 35142960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of pH on the biological struvite production in digested sludge dewatering liquors.
    Simoes F; Vale P; Stephenson T; Soares A
    Sci Rep; 2018 May; 8(1):7225. PubMed ID: 29740081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient Removal and Recovery from Urine Using Bio-Mineral Formation Processes.
    Colston RE; Nair A; Vale P; Hassard F; Stephenson T; Soares A
    ACS Sustain Resour Manag; 2024 Sep; 1(9):1906-1918. PubMed ID: 39355680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca-Mg kutnahorite and struvite production by Idiomarina strains at modern seawater salinities.
    González-Muñoz MT; De Linares C; Martínez-Ruiz F; Morcillo F; Martín-Ramos D; Arias JM
    Chemosphere; 2008 Jun; 72(3):465-72. PubMed ID: 18355891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the potential of sludge dewatering liquors to recover nutrients as struvite biominerals.
    Simoes F; Colston R; Rosa-Fernandes C; Vale P; Stephenson T; Soares A
    Environ Sci Ecotechnol; 2020 Jul; 3():100052. PubMed ID: 36159601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the influence of the reaction parameters on nutrients recovering from digestate by struvite crystallisation.
    Corona F; Hidalgo D; Martín-Marroquín JM; Antolín G
    Environ Sci Pollut Res Int; 2021 May; 28(19):24362-24374. PubMed ID: 32215789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovering phosphorus as struvite from the digested swine wastewater with bittern as a magnesium source.
    Ye ZL; Chen SH; Lu M; Shi JW; Lin LF; Wang SM
    Water Sci Technol; 2011; 64(2):334-40. PubMed ID: 22097004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of seeding materials and mixing strength on struvite precipitation.
    Wang J; Burken JG; Zhang X
    Water Environ Res; 2006 Feb; 78(2):125-32. PubMed ID: 16566520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of supersaturation ratio on phosphorus recovery from synthetic anaerobic digester supernatant through a struvite crystallization fluidized bed reactor.
    Ghosh S; Lobanov S; Lo VK
    Environ Technol; 2019 Jun; 40(15):2000-2010. PubMed ID: 29388510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of insoluble magnesium phosphates during growth of the archaea Halorubrum distributum and Halobacterium salinarium and the bacterium Brevibacterium antiquum.
    Smirnov A; Suzina N; Chudinova N; Kulakovskaya T; Kulaev I
    FEMS Microbiol Ecol; 2005 Mar; 52(1):129-37. PubMed ID: 16329899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of culture conditions on the formation of struvite by Myxococcus xanthus.
    Da Silva S; Bernet N; Delgenès JP; Moletta R
    Chemosphere; 2000 Jun; 40(12):1289-96. PubMed ID: 10789967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus recovery from wastewater by struvite in response to initial nutrients concentration and nitrogen/phosphorus molar ratio.
    Wang Y; Mou J; Liu X; Chang J
    Sci Total Environ; 2021 Oct; 789():147970. PubMed ID: 34323813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Struvite pellet crystallization in a high-strength nitrogen and phosphorus stream.
    Li Y; Liu M; Yuan Z; Zou J
    Water Sci Technol; 2013; 68(6):1300-5. PubMed ID: 24056427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical conditions of struvite growth and recovery using MgO in pilot scale crystallization plant.
    Park N; Chang H; Jang Y; Lim H; Jung J; Kim W
    Water Sci Technol; 2020 Jun; 81(12):2511-2521. PubMed ID: 32857739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the feasibility of phosphorus recovery as struvite from filter press centrate in a secondary wastewater treatment plant.
    Fattah KP; Mavinic DS; Koch FA; Jacob C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):756-64. PubMed ID: 18444078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing efficiency and economics of phosphorus recovery process by customizing the product based on sidestream characteristics - an alternative phosphorus recovery strategy.
    Shaddel S; Ucar S; Andreassen JP; Østerhus SW
    Water Sci Technol; 2019 May; 79(9):1777-1789. PubMed ID: 31241483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.