These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 34290334)
21. Effect of laser shock peening on electrochemical corrosion resistance of IN718 superalloy. Ning C; Zhang G; Yang Y; Zhang W Appl Opt; 2018 Apr; 57(10):2467-2473. PubMed ID: 29714229 [TBL] [Abstract][Full Text] [Related]
22. Impact on Mechanical Properties and Microstructural Response of Nickel-Based Superalloy GH4169 Subjected to Warm Laser Shock Peening. Lu Y; Yang Y; Zhao J; Yang Y; Qiao H; Hu X; Wu J; Sun B Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207847 [TBL] [Abstract][Full Text] [Related]
23. Confinement and absorption layer free nanosecond laser shock peening of tungsten and its alloy. Banerjee S; Spear J Opt Lett; 2022 Sep; 47(18):4736-4739. PubMed ID: 36107075 [TBL] [Abstract][Full Text] [Related]
24. A Comprehensive Review on Finite Element Analysis of Laser Shock Peening. Wakchaure MB; Misra M; Menezes PL Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274564 [TBL] [Abstract][Full Text] [Related]
25. Investigation of Strain Fatigue Behavior for Inconel 625 with Laser Shock Peening. Sun Y; Wu H; Du H; Yao Z Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295330 [TBL] [Abstract][Full Text] [Related]
26. Computational analysis of the effects of geometric irregularities and post-processing steps on the mechanical behavior of additively manufactured 316L stainless steel stents. Wiesent L; Schultheiß U; Lulla P; Noster U; Schratzenstaller T; Schmid C; Nonn A; Spear A PLoS One; 2020; 15(12):e0244463. PubMed ID: 33373392 [TBL] [Abstract][Full Text] [Related]
27. Effect of Various Peening Methods on the Fatigue Properties of Titanium Alloy Ti6Al4V Manufactured by Direct Metal Laser Sintering and Electron Beam Melting. Soyama H; Takeo F Materials (Basel); 2020 May; 13(10):. PubMed ID: 32408590 [TBL] [Abstract][Full Text] [Related]
28. Numerical Simulation on Laser Shock Peening of B Wang X; Chen B; Zhang F; Liu L; Xu S; Mei H; Lai X; Ren L Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770040 [TBL] [Abstract][Full Text] [Related]
29. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime. Su C; Zhou J; Meng X; Huang S Materials (Basel); 2016 Sep; 9(10):. PubMed ID: 28773920 [TBL] [Abstract][Full Text] [Related]
30. Numerical Modeling Design for the Hybrid Additive Manufacturing of Laser Directed Energy Deposition and Shot Peening Forming Fe-Cr-Ni-B-Si Alloy. Zhang X; Li D; Zhu W Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143133 [TBL] [Abstract][Full Text] [Related]
31. Effect of Laser Shock Peening on Fretting Fatigue Life of TC11 Titanium Alloy. Yang X; Zhang H; Cui H; Wen C Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33105746 [TBL] [Abstract][Full Text] [Related]
32. Anisotropy of Mechanical Properties and Residual Stress in Additively Manufactured 316L Specimens. Fedorenko A; Fedulov B; Kuzminova Y; Evlashin S; Staroverov O; Tretyakov M; Lomakin E; Akhatov I Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885332 [TBL] [Abstract][Full Text] [Related]
33. Effect of Ultrasonic Shot Peening and Laser Shock Peening on the Microstructure and Microhardness of IN738LC Alloys. Liu S; Kim Y; Jung J; Bae S; Jeong S; Shin K Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902917 [TBL] [Abstract][Full Text] [Related]
34. Effects of laser shock peening on the corrosion behavior and biocompatibility of a nickel-titanium alloy. Zhang R; Mankoci S; Walters N; Gao H; Zhang H; Hou X; Qin H; Ren Z; Zhou X; Doll GL; Martini A; Sahai N; Dong Y; Ye C J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1854-1863. PubMed ID: 30550636 [TBL] [Abstract][Full Text] [Related]
35. Numerical investigation of residual stresses in thin-walled additively manufactured structures from selective laser melting. Ahmed N; Barsoum I; Abu Al-Rub RK Heliyon; 2023 Sep; 9(9):e19385. PubMed ID: 37662789 [TBL] [Abstract][Full Text] [Related]
36. Residual stress measurements via neutron diffraction of additive manufactured stainless steel 17-4 PH. Masoomi M; Shamsaei N; Winholtz RA; Milner JL; Gnäupel-Herold T; Elwany A; Mahmoudi M; Thompson SM Data Brief; 2017 Aug; 13():408-414. PubMed ID: 28664178 [TBL] [Abstract][Full Text] [Related]
37. Tensile Property of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion Based on Treatment of Laser Shock Processing. Zhang L; Liu YH; Luo KY; Zhang YK; Zhao Y; Huang JY; Wu XD; Zhou C Materials (Basel); 2018 May; 11(5):. PubMed ID: 29772661 [TBL] [Abstract][Full Text] [Related]
38. On the effect of loading and printing parameters that influence the fatigue behavior of laser powder-bed fusion additively manufactured steels. Alhajeri A; Aremu O; Almutahhar M; Yousif M; Albinmousa J; Ali U Heliyon; 2024 May; 10(9):e29229. PubMed ID: 38707403 [TBL] [Abstract][Full Text] [Related]
39. LSP/MAO composite bio-coating on AZ80 magnesium alloy for biomedical application. Xiong Y; Hu Q; Song R; Hu X Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1299-1304. PubMed ID: 28415419 [TBL] [Abstract][Full Text] [Related]