These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34290424)

  • 1. Extreme flow simulations reveal skeletal adaptations of deep-sea sponges.
    Falcucci G; Amati G; Fanelli P; Krastev VK; Polverino G; Porfiri M; Succi S
    Nature; 2021 Jul; 595(7868):537-541. PubMed ID: 34290424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adapting to the Abyss: Passive Ventilation in the Deep-Sea Glass Sponge Euplectella aspergillum.
    Falcucci G; Amati G; Bella G; Facci AL; Krastev VK; Polverino G; Succi S; Porfiri M
    Phys Rev Lett; 2024 May; 132(20):208402. PubMed ID: 38829072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamics of sponge pumps and evolution of the sponge body plan.
    Asadzadeh SS; Kiørboe T; Larsen PS; Leys SP; Yahel G; Walther JH
    Elife; 2020 Nov; 9():. PubMed ID: 33252039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical and hydrodynamic analyses of helical strake-like ridges in a glass sponge.
    Fernandes MC; Saadat M; Cauchy-Dubois P; Inamura C; Sirota T; Milliron G; Haj-Hariri H; Bertoldi K; Weaver JC
    J R Soc Interface; 2021 Sep; 18(182):20210559. PubMed ID: 34493089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum.
    Weaver JC; Aizenberg J; Fantner GE; Kisailus D; Woesz A; Allen P; Fields K; Porter MJ; Zok FW; Hansma PK; Fratzl P; Morse DE
    J Struct Biol; 2007 Apr; 158(1):93-106. PubMed ID: 17175169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically robust lattices inspired by deep-sea glass sponges.
    Fernandes MC; Aizenberg J; Weaver JC; Bertoldi K
    Nat Mater; 2021 Feb; 20(2):237-241. PubMed ID: 32958878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures.
    Robson Brown K; Bacheva D; Trask RS
    J R Soc Interface; 2019 May; 16(154):20180965. PubMed ID: 31064257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lightweight lattice-based skeleton of the sponge Euplectella aspergillum: On the multifunctional design.
    Chen H; Jia Z; Li L
    J Mech Behav Biomed Mater; 2022 Nov; 135():105448. PubMed ID: 36166939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture.
    Monn MA; Kesari H
    J Mech Behav Biomed Mater; 2017 Dec; 76():69-75. PubMed ID: 28595803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale.
    Aizenberg J; Weaver JC; Thanawala MS; Sundar VC; Morse DE; Fratzl P
    Science; 2005 Jul; 309(5732):275-8. PubMed ID: 16002612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New functional insights into the internal architecture of the laminated anchor spicules of Euplectella aspergillum.
    Monn MA; Weaver JC; Zhang T; Aizenberg J; Kesari H
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4976-81. PubMed ID: 25848003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni.
    Wang X; Schröder HC; Müller WE
    Int Rev Cell Mol Biol; 2009; 273():69-115. PubMed ID: 19215903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation.
    Shimizu K; Amano T; Bari MR; Weaver JC; Arima J; Mori N
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11449-54. PubMed ID: 26261346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of loading rate on the mechanical behavior of a natural rigid composite.
    Walter SL; Flinn BD; Mayer G
    Acta Biomater; 2007 May; 3(3):377-82. PubMed ID: 17166783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biology of glass sponges.
    Leys SP; Mackie GO; Reiswig HM
    Adv Mar Biol; 2007; 52():1-145. PubMed ID: 17298890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of biosilica in materials science: lessons from siliceous biological systems for structural composites.
    Mayer G
    Prog Mol Subcell Biol; 2009; 47():277-94. PubMed ID: 19198782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Morphological, optical, and structural characteristics of glass sponge spicules and the photoreceptor hypothesis of their survival].
    Voznesenskiĭ SS; Kul'chin IuN; Galkina AN; Sergeev AA
    Biofizika; 2010; 55(1):107-12. PubMed ID: 20184148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheology of marine sponges reveals anisotropic mechanics and tuned dynamics.
    Kraus EA; Mellenthin LE; Siwiecki SA; Song D; Yan J; Janmey PA; Sweeney AM
    J R Soc Interface; 2022 Oct; 19(195):20220476. PubMed ID: 36259170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ investigations of failure mechanisms of silica fibers from the venus flower basket (Euplectella Aspergillum).
    Morankar SK; Mistry Y; Bhate D; Penick CA; Chawla N
    Acta Biomater; 2023 May; 162():304-311. PubMed ID: 36963595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.