These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34290424)

  • 41. Mesoscale elastic properties of marine sponge spicules.
    Zhang Y; Reed BW; Chung FR; Koski KJ
    J Struct Biol; 2016 Jan; 193(1):67-74. PubMed ID: 26672719
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Suspended sediment causes feeding current arrests in situ in the glass sponge Aphrocallistes vastus.
    Grant N; Matveev E; Kahn AS; Leys SP
    Mar Environ Res; 2018 Jun; 137():111-120. PubMed ID: 29549972
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of sponge-bacteria interactions: the sponge Aplysilla rosea challenged by its associated bacterium Streptomyces ACT-52A in a controlled aquarium system.
    Mehbub MF; Tanner JE; Barnett SJ; Franco CM; Zhang W
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10609-10626. PubMed ID: 27717966
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Low functional redundancy in sponges as a result of differential picoplankton use.
    Perea-Blázquez A; Davy SK; Bell JJ
    Biol Bull; 2013 Feb; 224(1):29-34. PubMed ID: 23493506
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nutrient fluxes through sponges: biology, budgets, and ecological implications.
    Maldonado M; Ribes M; van Duyl FC
    Adv Mar Biol; 2012; 62():113-82. PubMed ID: 22664122
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges.
    Zhou K; Zhang R; Sun J; Zhang W; Tian RM; Chen C; Kawagucci S; Xu Y
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492669
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Warming and acidification threaten glass sponge Aphrocallistes vastus pumping and reef formation.
    Stevenson A; Archer SK; Schultz JA; Dunham A; Marliave JB; Martone P; Harley CDG
    Sci Rep; 2020 May; 10(1):8176. PubMed ID: 32424237
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elements of a 'nervous system' in sponges.
    Leys SP
    J Exp Biol; 2015 Feb; 218(Pt 4):581-91. PubMed ID: 25696821
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea.
    Lee OO; Wang Y; Yang J; Lafi FF; Al-Suwailem A; Qian PY
    ISME J; 2011 Apr; 5(4):650-64. PubMed ID: 21085196
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reproduction cycles and strategies of the cold-water sponges Halisarca dujardini (Demospongiae, Halisarcida), Myxilla incrustans and Iophon piceus (Demospongiae, Poecilosclerida) from the White Sea.
    Ereskovsky AV
    Biol Bull; 2000 Feb; 198(1):77-87. PubMed ID: 10707815
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimization design of lightweight structure inspired by glass sponges (Porifera, Hexacinellida) and its mechanical properties.
    Li L; Guo C; Chen Y; Chen Y
    Bioinspir Biomim; 2020 Mar; 15(3):036006. PubMed ID: 31945752
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recovery of sponges after extreme mortality events: morphological and taxonomic patterns in regeneration versus recruitment.
    Wulff J
    Integr Comp Biol; 2013 Sep; 53(3):512-23. PubMed ID: 23748633
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Filtering activity of Spongia officinalis var. adriatica (Schmidt) (Porifera, Demospongiae) on bacterioplankton: implications for bioremediation of polluted seawater.
    Stabili L; Licciano M; Giangrande A; Longo C; Mercurio M; Marzano CN; Corriero G
    Water Res; 2006 Sep; 40(16):3083-3090. PubMed ID: 16884759
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Morphological models of radiate accretive growth and the influence of hydrodynamics.
    Kaandorp JA; Sloot PM
    J Theor Biol; 2001 Apr; 209(3):257-74. PubMed ID: 11312588
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Archaea appear to dominate the microbiome of Inflatella pellicula deep sea sponges.
    Jackson SA; Flemer B; McCann A; Kennedy J; Morrissey JP; O'Gara F; Dobson AD
    PLoS One; 2013; 8(12):e84438. PubMed ID: 24386380
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reproduction in a carnivorous sponge: the significance of the absence of an aquiferous system to the sponge body plan.
    Riesgo A; Taylor C; Leys SP
    Evol Dev; 2007; 9(6):618-31. PubMed ID: 17976057
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs.
    Chaves-Fonnegra A; Riegl B; Zea S; Lopez JV; Smith T; Brandt M; Gilliam DS
    Glob Chang Biol; 2018 Feb; 24(2):773-785. PubMed ID: 29076634
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Diapause in the gemmules of the marine sponge, Haliclona loosanoffi, with a note on the gemmules of Haliclona oculata.
    Fell PE
    Biol Bull; 1974 Oct; 147(2):333-51. PubMed ID: 4441559
    [No Abstract]   [Full Text] [Related]  

  • 59. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse.
    Fillinger L; Janussen D; Lundälv T; Richter C
    Curr Biol; 2013 Jul; 23(14):1330-4. PubMed ID: 23850279
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios.
    Bennett H; Bell JJ; Davy SK; Webster NS; Francis DS
    Glob Chang Biol; 2018 Jul; 24(7):3130-3144. PubMed ID: 29505691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.